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Welcome to the 27th  lecture. In the previous lecture, we saw how to derive some of the entries of 

the element coefficient for quadratic elements.  
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First, we saw the derivation of 𝑐11 (a diagonal element) whose expression is given below.  

 

The above expression was same in case of a linear element. We also saw the following expression. 

 

Remember, the left hand side of the expression has 𝑁1, 𝑁2, and 𝑁3 in case of linear elements 

because for linear elements, 𝑁1 = 𝐿1, 𝑁2 = 𝐿2, and 𝑁3 = 𝐿3. The fundamental formula is in terms 

of area coordinates as given in the above equation. Incidentally for linear elements, 𝑁1 = 𝐿1, 𝑁2 =



𝐿2, and 𝑁3 = 𝐿3. That is why for linear elements we have used the expression with 𝑁1, 𝑁2, and 

𝑁3.  
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Now let us see the derivation for 𝑐14
𝑒  entry. The expression for this entry will be different because 

in case of linear elements, 𝑐14 doesn’t exist as size of its element coefficient matrix is 3 × 3.  𝑐14
𝑒  

for any element e is given by the following expression. 
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In the previous lecture, we have already derived the following expression for 
𝜕𝑁1

𝜕𝑥
.  
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Now, the expression of 𝑁4 is 4𝐿1𝐿2 which is already derived in the previous lecture.  
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The expression of 
𝜕𝑁4

𝜕𝑥
 can be derived as given below.  

 

We have already seen the derivative of 𝐿1 with x. The expression of 
𝜕𝑁1

𝜕𝑥

𝜕𝑁4

𝜕𝑥
 which is required 

to derive 𝑐14
𝑒  can be calculated as given below. 
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Now, we have to integrate the product over the elemental area.  

 

This integral can be simplified by using the following integral that we have seen in the previous 

lecture.  

 

For example, for ∬ 2𝑃1
2𝐿1𝐿2𝑑𝑥𝑑𝑦 l = 1, m = 1, n = 0. So the result of this integral is given below. 

∬ 2𝑃1
2𝐿1𝐿2𝑑𝑥𝑑𝑦 = 2𝑃1

2 [
1! 1!

(1 + 1 + 0 + 2)!
] 2∆ = 2𝑃1

2 [
1! 1!

4!
] 2∆ 

Likewise, we can do it for the other three terms and we get the corresponding expressions. Then, 

after simplification, we will find the following expression. 



 

Similarly, the product of derivatives with respect to y, then the expression for the entry 𝑐14
𝑒  is given 

below. The factor 1/𝜇 will come in the expression if we are solving Poisson’s equation. 
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Now we will see the entries of the right hand side matrix which is contributed by the source J. If 

you remember in case of linear elements, we had 
𝐽∆

3
 as the contribution from the source (J).  Also 

remember that the J is distributed throughout the element. Now we will see how do we apportion 

J to the various nodes in the discretized domain. 

In FE analysis, we are going from a continuous domain to a discretized domain. The entry for node 

1 in an element level source matrix can be determined by using the following expression. 



 

 Now, we substitute 𝑁1 = 2𝐿1
2 − 𝐿1 and then after simplification we get 

 

Again, use the following expression to solve the above integrals.  

 

Here, for ∬(2L1
2 )𝑑𝑥𝑑𝑦, 𝑙 = 2, 𝑚 = 0, and 𝑛 = 0. So the solution of this integral is 

2!

4!
2∆. Using 

the same procedure, the value of the other integral can be obtained and the expression of 𝑏1
𝑒 reduces 

as given below.   

 

Similarly, 𝑏2
𝑒  and 𝑏3

𝑒 are 0.  
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That means, in case of a quadratic element, J does not get apportioned to the main nodes 1, 2, and 

3. But they get apportioned to nodes 4, 5, and 6 which are the midpoints of the edges. Now let us 

see the derivation of 𝑏4
𝑒. The expression for this entry after substituting 𝑁4 = 4𝐿1𝐿2 is given below.  

 

The value of the ∬(4L1L2)𝑑𝑥𝑑𝑦 is 
1!1!

(1+1+0+2)!
2∆=

1!1!

4!
2∆ because 𝑙 = 1, 𝑚 = 1, and 𝑛 = 0. 

With this, the expression of 𝑏4
𝑒 entry is as given below. 

 

Similarly, 𝑏5
𝑒 and 𝑏6

𝑒 can be calculated as J∆/3.  

That means for a quadratic element with nodes 1 to 6, J reduces to J∆/3 after discretization and it 

gets apportioned to 4, 5, 6 nodes and not to nodes 1, 2, 3.  
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Thus we have seen the entire FE procedure for quadratic elements and we have derived the entire 

element level 𝑏 matrix.  



Similarly, we derived one off-diagonal entry (𝑐14
𝑒 ) and one diagonal entry (𝑐11

𝑒 ) of the element 

coefficient matrix. By doing this, we would have derived all the entire element coefficient 

matrices.   

Similarly, the other entries of the element coefficient matrix can be derived.  Then we also derived 

𝑏𝑒 matrix which represents the source contribution. After forming element level matrices we have 

to form a global coefficient matrix [𝐶] and [𝐵]. Then the rest of the procedure is same as for linear 

elements. Then this completes the FE formulation for quadratic elements. 

Now we will see the next topic that is the solution of diffusion equation for time harmonic 

problems which are very common. In fact, most of the electromagnetic devices are AC devices. 

So the excitation to these devices is time varying. Earlier also, for the electrostatic analysis voltage 

at every point in a transformer or any other high voltage equipment is time varying. But in that 

analysis we considered the voltage at its peak value to calculate the maximum value of electrostatic 

field between two electrodes. 
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When we are interested to calculate eddy currents we have to consider induction effects. For this, 

we have to consider time in transient analysis or frequency in time harmonic case. The later one is 

applicable when all the quantities are sinusoidal. So, we are going to see time harmonic analysis 

in which all quantities are sinusoidal.  



Effectively, we are assuming all the materials in the given problem domain are linear. For example, 

if we are applying voltage, then B will be sinusoidal and if we are assuming the magnetic material 

is linear, then H and I will be also sinusoidal and there are no harmonics. Even if there are 

harmonics in excitation and if the material is linear then for each harmonic we could use this 

formulation and the total loss is calculated by combining all the effects.   

Now, let us get into the following diffusion equation that we have already seen in the previous 

lecture.  

 

In the above equations, 
𝜕𝐴

𝜕𝑡
 and 𝑗𝜔𝐴 terms represent the induced effect and their units are same as 

current density.  

Because 
𝜕𝐴

𝜕𝑡
 is induced electric field intensity (E) and 𝜎𝐸 is eddy current density. So unit wise or 

variable wise it is matching in the above two equations. This we have seen earlier in the basics of 

electromagnetics.  In frequency domain, 
𝜕𝐴

𝜕𝑡
 gets replaced by 𝑗𝜔𝐴. The functional for diffusion 

equation is given below.  

 

While deriving functional first we started with Laplace’s equation and then we derived for 

Poisson’s equation. Then we also wrote the functional for the diffusion equation. Also the logic to 

write this functional is simple. Earlier also it was mentioned that we can take the terms (other than 

Laplace’s term)  to the right hand side and the sign of the term comes in the functional expression. 

For example, if we take the diffusion term to the right hand side then its sign changes to plus and 

in the functional we get A2. 

J0 in the governing equation is alone. So it gets multiplied with A in the functional expression. 

Like this, by intuition we can write the functional for a given PDE. But we can derive the functional 



for the diffusion equation using the procedure that we have seen earlier. A half will appear with 

the two terms because there is a square term. Again that is due to the rule that was mentioned 

earlier. 

Whenever there is a square term in the functional, half will get multiplied and if there is only A 

term then there is no half there. So, the above equation is the expression for the functional of the 

diffusion equation. Now, this equation is for the whole domain. So, if we discretize the problem 

domain using the FE procedure then the expression of functional reduces to the following equation.   

 

The first summation in all the three terms is representing elements, because we are discretizing the 

whole domain. So they are summations over all elements and the ∇2 term in the governing equation 

results into nine terms for each element.  

The corresponding nine entries of element coefficient matrix are represented with 

∫
1

𝜇
𝐴𝑖

𝑒 (∇𝑁𝑖(𝑥, 𝑦) ⋅ ∇𝑁𝑗(𝑥, 𝑦)) 𝐴𝑗
𝑒𝑑𝑥𝑑𝑦

𝑆𝑒
. The two summations in the first term of the above 

equation will give us entries of the element coefficient matrix multiplied by 𝐴𝑖 and 𝐴𝑗. When we 

minimize the functional, one of these 𝐴𝑖s or 𝐴𝑗s will be cancelled. 

Then after minimization, one entry of element coefficient matrix and the corresponding potential 

will remain. So the final set of matrix equation is 𝐶𝐴 = 𝐵. The first term in the above equation is 

going to give the element coefficient matrix. In the summation of the first term, if 𝑖 = 1 and 𝑗 = 1 

then that will give us 𝐶11 and it will be multiplied by 𝐴1
2. When we minimize by differentiating 

with respect to 𝐴1 then one of the ′𝐴1′s will be cancelled. So this will result in 𝐶11𝐴1 in the final 

linear system of equations.  

We have seen this number of times. Then the third term in the above equation is also identical and 

there is no change. So, this term will result into 
𝐽∆

3
 and it will get apportioned to nodes 1, 2, and 3 



for linear elements. Remember that in this formulation we are using linear elements  not quadratic 

elements.  

The new or extra term here corresponds to 
1

2
𝑗𝜔 ∫ 𝜎𝐴2𝑑𝑣

𝑣
 term because we have seen the first and 

last terms in Poisson’s equation also.   
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In the diffusion term, if we substitute A in terms of ∑ 𝑁𝑖𝐴𝑖
3
𝑖=1  then we will get the following term.   

1

2
𝑗𝜔 ∫ 𝜎𝐴2𝑑𝑣

𝑣

=
1

2
∑ 𝑗𝜎𝜔 ∑ ∑ ∫ 𝐴𝑖

𝑒𝑁𝑖(𝑥, 𝑦)𝑁𝑗(𝑥, 𝑦)𝐴𝑗
𝑒𝑑𝑥𝑑𝑦

𝑆𝑒

3

𝑗=1

3

𝑖=1𝑒

 

As explained here, (𝐴𝑒)2 = (𝑁1𝐴1
𝑒 + 𝑁2𝐴2

𝑒 + 𝑁3𝐴3
𝑒)2 will give nine terms. Those nine terms are 

represented with two summations as given in the above equation. 

Again using the following formula in terms of 𝑁1, 𝑁2, and 𝑁3 the above integral is solved. 

 

Here we are going back to the same old formula which is in terms of shape function, because in 

this formulation we are using linear elements. Since the first and third terms of the functional 



expression are same as earlier, we are concentrating on the second term which is given by the 

following integral.   

 

That means in the above formula, 𝑙 = 1, 𝑚 = 1, and 𝑛 = 0 and the solution of the above integral 

is as given below.  

 

So, the off-diagonal entries for the diffusion term will be ∆𝑒/12. Diagonal entries will come when 

𝑖 = 𝑗 and the integral that corresponds to the diffusion term is given below.   

 

Because, 𝑁𝑖
2 means 𝑙 = 2, 𝑚 = 𝑛 = 0 and the integral that corresponds to the diffusion term will 

result in ∆𝑒/6 as given in the above equation. So, ∆𝑒/6 will be the diagonal entries. The element 

level matrix equation after minimizing the functional will be given by the following equation.  

 

In the above equation, [𝐶𝑒]{𝐴𝑒} and {𝐵𝑒} are same as in Poisson’s equation. Here we have to note 

that 𝐴𝑒 and 𝐵𝑒 are column vectors and they are enclosed in curly brackets.   

The [𝐷𝑒] is given by the following matrix  

[𝐷𝑒] = 𝜎
∆𝑒

12
[
2 1 1
1 2 1
1 1 2

] 

 Using ∫ 𝑁𝑖(𝑥, 𝑦)𝑁𝑗(𝑥, 𝑦)𝑑𝑥𝑑𝑦,
𝑆𝑒

 we have got the diagonal and off-diagonal entries. Only one A 

appears in the final matrix equation because after minimization one of the 𝐴𝑖s will go. So only one 

𝐴𝑖 will remain after minimization.   
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The final matrix equation is [𝐶𝑐
𝑒]{𝐴𝑒} = {𝐵𝑒}. As compared to Poisson’s equation here, the 

coefficient matrix is complex. We have to remember that here, A is a phasor because we are 

formulating in frequency domain. In [𝐵𝑒], each of the entries is some function of J (current density) 

which is also a phasor quantity. So the whole matrix equation is in phasor form. The entries of 

matrices [𝐶𝑒]  [𝐵𝑒] are same as earlier formulations. 

Now, to bring the final matrix equation in a form like 𝐶𝐴 = 𝐵, we can consider that [𝐶𝑐
𝑒] = [𝐶𝑒] +

𝑗𝜔[𝐷𝑒].  c in the subscript of [𝐶𝑐
𝑒] stands for complex matrix. Then we finally get the following 

matrix equation.  

[𝐶𝑐
𝑒]{𝐴𝑒} = {𝐵𝑒} 

In the above equation, the unknown variables are magnetic vector potentials. This matrix equation 

is at the element level. Now we combine all the element level matrices by following the usual 

procedure of formation of global matrices and then we would get the solution (nodal magnetic 

vector potentials {𝐴}) of the whole domain.  

So, [𝐶𝑐]{𝐴} = {𝐵} is the global matrix equation. From this equation, we can calculate {𝐴} as given 

below 

{𝐴} = [𝐶𝑐]−1{𝐵} 



Before that we have to apply the boundary conditions. Remember that the B matrix was only 

coming from current density (J). Till now the source is being represented in B matrix. But for a 

problem domain in FEM there could be a boundary. So, we have to impose appropriate boundary 

conditions as discussed in the previous lectures. Finally, we can solve this global equation in terms 

of [𝐶𝑐]{𝐴} = {𝐵}. 
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Now, we will quickly discuss two improtent points which we did not cover in basics of 

electromagnetics and these are very important for time harmonic analysis. They are complex 

permittivity and complex permeability. 

The derivation given in the above slide are very simple and straightforward and it starts from 

Maxwell’s equation. We know that ∇ × 𝐇 = 𝐉 +
𝜕𝐃

𝜕𝑡
. In frequency domain, if we replace  

𝜕

𝜕𝑡
 by 𝑗𝜔 

J by 𝜎𝐄, and D by 𝜖0𝜖𝑟𝐄 we get ∇ × 𝐇 = 𝜎𝐄 + 𝜖0𝜖𝑟𝐄. Then take 𝑗𝜔𝐄 as common and get the right 

hand side of the curl equation as 𝑗𝜔𝜖0 [𝜖𝑟 −
𝑗𝜎

𝜔𝜖0
] 𝐄.  So we get the curl equation as given below.  

∇ × 𝐇 = 𝑗𝜔𝜖0 [𝜖𝑟 −
𝑗𝜎

𝜔𝜖0
] 𝐄 

Now we will call this [𝜖𝑟 −
𝑗𝜎

𝜔𝜖0
] as complex permittivity as given below.  



 

The complex permittivity has real and imaginary components. The imaginary component is 

representing losses because it has a  𝜎 term which represents finite conductivity of the insulation. 

For example, a practical capacitor will be represented by a parallel connection of R and C elements 

and an ideal capacitor will be represented with only pure C. So for an ideal capacitor we have only 

𝜖′. If it is a practical capacitor or a lossy capacitor, R also will be there and that will be represented 

by 𝜖′′.  

Now, if we represent a lossy capacitor with the complex permittivity 𝜖′ − 𝑗𝜖′′, then we can 

formulate current as  

 

Because, the current passing through a capacitor is 𝐼 = 𝑗𝜔𝐶𝑉, where  𝐶 =
𝜖𝑆

𝑑
. Here, 𝜖 = 𝜖′ − 𝑗𝜖′′ 

is a complex number, 𝑆 is the cross-sectional area, and 𝑑 is the distance between the electrodes. 

Then the expression of current is simplified as given below.   

𝐼 =
𝜔𝑆

𝑑
[𝑗𝜖′ + 𝜖′′]𝑉 

The above equation is the final expression of current. Now, one of the common diagnostic terms 

for a capacitor is tan 𝛿 which is defined as the ratio of the resistive component to the capacitive 

component of the current and it is mathematically represented as 

 

The above expression of tan 𝛿 is obtained by substituting the resistive component (
𝜔𝑆

𝑑
𝜖𝑉) and 

reactive component 
𝜔𝑆

𝑑
𝜖′′𝑉 of the current. The difference between circuit representation and field 

representation is that the lossy component is represented by 𝜖′′ (imaginary part) and the non-lossy 

component is represented by 𝜖′ (real part).  



The current passing through a lossy capacitor is represented by the following phasor diagram.  

 

In the above figure, I is the resultant of resistive (𝐼𝑅) and reactive (𝐼𝑐) components of the current 

and then we have 𝛿 = 90 − 𝜃. The tan 𝛿 is the ratio of the opposite side (𝐼𝑅) and the adjacent side 

(𝐼𝑐). The complex permittivity will be useful to find out losses in a dielectric material using FE 

formulation. So, complex permittivity can be used in time harmonic analysis of dielectric matrial 

with finite conductivity.  
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The next concept is complex permeability. This will be derived by starting with 𝑉 = 𝑁
𝑑𝜓

𝑑𝑡
.  We 

know that 𝜓 = 𝐵𝑆 and induced voltage can be written in the time-harmonic analysis as 

𝑉 = 𝑁𝑆
𝑑𝐵

𝑑𝑡
= 𝑗𝜔𝑆𝑁𝐵  

 We can rearrange the above equation to determine the expression of B as  



𝐵 = −
𝑗𝑉

𝜔𝑁𝑆
 

 Then we know that 𝐻 =
𝑁𝐼

𝑙
 and 𝜇 =

𝐵

𝐻
. Now, determine the expression of permeability by using 

the above expressions of 𝐵 and 𝐻 as given below.  

𝜇 =
𝐵

𝐻
= −

(
𝑗

𝜔𝑆𝑁)

𝑁
𝑙

𝑉

𝐼
 

 Then, 
𝑉

𝐼
= 𝑍. By doing this, we are trying to find out the equivalent circuit for a lossy magnetic 

material. Using complex permittivity, we represented an equivalent circuit for a lossy capacitor. 

Going further, Z is replaced by 𝑅 + 𝑗𝜔𝐿. Further, we simplify the permeability as given below.  

𝜇 = −
𝑗𝑙

𝜔𝑆𝑁2
𝑍 = −

𝑗𝑙

𝜔𝑆𝑁2
(𝑅 + 𝑗𝜔𝐿) =

𝑙

𝑆𝑁2
(𝐿 − 𝑗

𝑅

𝜔
) = 𝜇′ − 𝑗𝜇′′ 

Then we get a real term (𝜇′)and an imaginary term (𝜇′′) for complex permeability. Here, we have 

to notice that 𝑉 = +𝑁
𝑑𝜓

𝑑𝑡
  and it is from a circuit viewpoint and this we have discussed in basics. 

𝑉 = 𝑁𝑆
𝑑𝐵

𝑑𝑡
 represents that  𝑉 leads 𝜓 or 𝐵 by 90o as shown in the following phasor diagram.  

 

In the above figure,  phasor 𝑉 will lead 𝐵 by 90o. Since we are talking about a lossy case 𝐼 will lag 

𝑉 by some angle 𝜃. The moment we have 𝜇′′ then the material is representing a lossy magnetic 

material. That means, in the corresponding circuit, 𝐼 will lag 𝑉 by some angle 𝜃. Here, we will 

have 𝑉𝐼 cos 𝜃 as the corresponding loss. 



If the material is purely inductive and lossless then this angle 𝜃 will be 90o and if it is a perfect 

resistive material then the angle 𝜃 will be zero. Now this loss corresponds to hysteresis loss in the 

material and in the case of hysteresis phenomena, 𝐻 leads 𝐵 by some hysteresis angle 𝜃ℎ. 
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To further understand elliptic or  complex permeability, let us now study the original hysteresis 

curve which is in blue color in the following figure.  

 

As we know, for a ferromagnetic material there is a hysteresis angle between B and H. So, H goes 

to zero first and then B goes to zero when the curve is traversed in anticlockwise direction. Now, 

we plot B and H with time separately as in shown in the following figure.   



 

If we force B to be sinusoidal which can be done during the experimental measurements then H 

has to be non-sinusoidal as per the blue hysteresis curve in the previous diagram. 

Here, H is having a fundamental component as well as some harmonics. In the above figure, H 

(dotted waveform) also represents the corresponding harmonics. These harmonics are not available 

for time harmonic formulation. In time harmonic formulation, all the field quantities or field 

variables should be sinusoidal at one frequency. So in this analysis, we can neglect the harmonics 

in the H field and we only consider its fundamental component. If we do that, then we get H 

waveform as sinusoidal as shown in the following figure. 

 

In the above figure, both B and H fields are sinusoidal and now we can use time harmonic 

formulation and the corresponding BH loop will be elliptical as given by orange loop in the 

previous figure and that loop  is having both B and H as sinusoidal with fundamental components 

only. Although we have neglected harmonics in H, the hysteresis angle (𝜃ℎ) is preserved.  

Then, with this simplification and the assumption that harmonics in H being neglected, we get the 

BH curve as given by orange color and the corresponding permeability is called as elliptic or  



complex permeability. The time harmonic formulation in terms of complex or elliptical 

permeability which was discussed on the previous slide can be used to calculate losses in the 

frequency domain FEM analysis.  We will stop here and continue our discussion on diffusion 

problems in the next lecture. 
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