Electrical Equipment and Machines: Finite Element Analysis
Professor Shrikrishna V. Kulkarni
Department of Electrical Engineering
Indian Institute of Technology Bombay
Lecture 27
Time Harmonic FE Analysis

Welcome to the 27" lecture. In the previous lecture, we saw how to derive some of the entries of

the element coefficient for quadratic elements.
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First, we saw the derivation of c;; (a diagonal element) whose expression is given below.

1
e _

— PZ + 2
€11 4An (P + Q1)
The above expression was same in case of a linear element. We also saw the following expression.

U'm!n! 24
(l+m+n+2)!

[ @i dxay -

Remember, the left hand side of the expression has N;, N,, and N5 in case of linear elements
because for linear elements, N; = L;, N, = L,, and N; = L. The fundamental formula is in terms

of area coordinates as given in the above equation. Incidentally for linear elements, N; = L;, N, =



L,, and N3 = L. That is why for linear elements we have used the expression with N;, N,, and
Ns.
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Now let us see the derivation for c5, entry. The expression for this entry will be different because
in case of linear elements, c;, doesn’t exist as size of its element coefficient matrix is 3 X 3. c{,

for any element e is given by the following expression.

dN,dN " dN, 0N,
J’J dxdy
dx 6x dy dy
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In the previous lecture, we have already derived the following expression for 6_
X
dN, 2L,P, Py
ax A 2A
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Now, the expression of N, is 4L, L, which is already derived in the previous lecture.
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The expression of O can be derived as given below.
X
Ny =ann, Ne_ g%y gp0f2) dh_Bodl, P
dx dx dx dx 2A" dx 2A
dN, Py Py 2
-'-—:4(—1’. L—):—PL + L P
dx oA 2 152 A( 12 1P2)

ON,

o which is required

oN
We have already seen the derivative of L, with x. The expression of a—xl

to derive cf, can be calculated as given below.

dN;dN, (2L,P, P,
LA 2A
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Now, we have to integrate the product over the elemental area.

dN, dN, 2
Ij ( dxl d;) dy = e ﬂ- 2PZL,Lydxdy — II_LZ dxdy + J-f 2P, P14

This integral can be simplified by using the following integral that we have seen in the previous

dxdy

lecture.

I'm!n! -,
(l+m+n+2)!

f (Ll)i(l-z)m(Le,)n dxdy =

For example, for [ 2P?L,L,dxdy =1, m=1,n=0. So the result of this integral is given below.

111!
ﬂ 2P2L,L,dxdy = 2P2 (1+1+O+2)'] 2A = 2P? [ o ]ZA

Likewise, we can do it for the other three terms and we get the corresponding expressions. Then,

after simplification, we will find the following expression.
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Similarly, the product of derivatives with respect to y, then the expression for the entry cf, is given

below. The factor 1/u will come in the expression if we are solving Poisson’s equation.

dNydNy | dNydNg) o 1 _—
fj dx dx dy dy X y_ﬁ 142 Qle)
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For evaluating the element level source matrix

Node 1 % 74
by =Jﬂ N,dxdy By using eq. (3), we get 9 %
||'rc:.;::" L
side 3
=J ﬂ @1 -L,)ddy = JH (213)dxdy - JH L, dxdy N
Usingeq. 9 LY
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similarly, b3 = 0,65 =0 Al
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Now we will see the entries of the right hand side matrix which is contributed by the source J. If
. . A T
you remember in case of linear elements, we had ]? as the contribution from the source (J). Also

remember that the J is distributed throughout the element. Now we will see how do we apportion

J to the various nodes in the discretized domain.

In FE analysis, we are going from a continuous domain to a discretized domain. The entry for node

1 in an element level source matrix can be determined by using the following expression.



b =J ff N, dxdy

Now, we substitute N; = 2L — L, and then after simplification we get
bt = [ @1z - L)dxdy =y ([ @rtaxay — off Liaxay

Again, use the following expression to solve the above integrals.

'm!n!

[ et o axdy = giasaa

Here, for [f(2L3)dxdy, | = 2, m = 0, and n = 0. So the solution of this integral is i—iZA. Using

the same procedure, the value of the other integral can be obtained and the expression of b reduces

as given below.
2! 1!
e — e _

Similarly, b5 and b§ are 0.
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That means, in case of a quadratic element, J does not get apportioned to the main nodes 1, 2, and
3. But they get apportioned to nodes 4, 5, and 6 which are the midpoints of the edges. Now let us

see the derivation of b5. The expression for this entry after substituting N, = 4L, L, is given below.

bi =4 jf Nydxdy =J j (4L,L,;)dxdy

11!
(1+1+0+2)!

The value of the [f(4L1L2)dxdy is = %ZA because [ =1, m =1, and n = 0.

With this, the expression of bS entry is as given below.

11 A
be =4d ——2A=—J
41 3

Similarly, bg and b¢ can be calculated as JA/3.

That means for a quadratic element with nodes 1 to 6, J reduces to JA/3 after discretization and it

gets apportioned to 4, 5, 6 nodes and not to nodes 1, 2, 3.

(Refer Slide Time: 8:58)

VLU @ W

i 1
| 4 b SV
..... (] ] G Mchgrouny o Mo et e Web Documerty S Desiog Open

[C¢]is a symmetric matrix given by
46, - 111 \
e Y L= 4
=—1__[-(pp Lj=123 w
“= 1 [u( : ’+Q'Q‘)l J o 7

) /
111 11 " COEEP
€ - IIT Bomba
Clel = EL‘I(PIPI % QIQI)‘ = _mlE(PIPZ + QIQI)] EHZSL’LSMY"O
= I : . 1 S
Cig =3—A[ﬁ(P1P2+Qle)] qs=0 Gs=33 I‘I(Pz”ﬁQzQz) , Q
€ L e e e e € ol & o 26 7
CI6_3_A ;(P|P3+0103) C4=Cly C=0C33=0 C5=0Cs C36=Cpg Al
Ref: 1. Jin, The finite element method in electromagnetics, John Wiley & Sons, Inc., New York, 1993
Electrical Equipment and Machines: Finite Element Analysis
) (NPTEL - MOOC course) P
(.) Prof. S. V. Kulkarni, EE Dept., IIT Bombay

Thus we have seen the entire FE procedure for quadratic elements and we have derived the entire

element level b matrix.



Similarly, we derived one off-diagonal entry (c7,) and one diagonal entry (c5,) of the element
coefficient matrix. By doing this, we would have derived all the entire element coefficient

matrices.

Similarly, the other entries of the element coefficient matrix can be derived. Then we also derived
b, matrix which represents the source contribution. After forming element level matrices we have
to form a global coefficient matrix [C] and [B]. Then the rest of the procedure is same as for linear

elements. Then this completes the FE formulation for quadratic elements.

Now we will see the next topic that is the solution of diffusion equation for time harmonic
problems which are very common. In fact, most of the electromagnetic devices are AC devices.
So the excitation to these devices is time varying. Earlier also, for the electrostatic analysis voltage
at every point in a transformer or any other high voltage equipment is time varying. But in that
analysis we considered the voltage at its peak value to calculate the maximum value of electrostatic

field between two electrodes.
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Solution of Diffusion Equation: Time-Harmonic Problems
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When we are interested to calculate eddy currents we have to consider induction effects. For this,
we have to consider time in transient analysis or frequency in time harmonic case. The later one is
applicable when all the quantities are sinusoidal. So, we are going to see time harmonic analysis

in which all quantities are sinusoidal.



Effectively, we are assuming all the materials in the given problem domain are linear. For example,
if we are applying voltage, then B will be sinusoidal and if we are assuming the magnetic material
is linear, then H and I will be also sinusoidal and there are no harmonics. Even if there are
harmonics in excitation and if the material is linear then for each harmonic we could use this

formulation and the total loss is calculated by combining all the effects.

Now, let us get into the following diffusion equation that we have already seen in the previous

lecture.
1_, dA _
;v A—oor=—J time-domain
L o . :
E‘F A—jwocA=—-J, frequency-domain

In the above equations, 3—:‘ and jwA terms represent the induced effect and their units are same as

current density.

Because ?,_/2 is induced electric field intensity (E) and oF is eddy current density. So unit wise or
variable wise it is matching in the above two equations. This we have seen earlier in the basics of
electromagnetics. In frequency domain, Z—f gets replaced by jwA. The functional for diffusion

equation is given below.

F(4) = EJ‘ ! IPA|2dv + ljw f gAldv — f}DAdv

2 v Iu 2 v v
While deriving functional first we started with Laplace’s equation and then we derived for
Poisson’s equation. Then we also wrote the functional for the diffusion equation. Also the logic to
write this functional is simple. Earlier also it was mentioned that we can take the terms (other than
Laplace’s term) to the right hand side and the sign of the term comes in the functional expression.
For example, if we take the diffusion term to the right hand side then its sign changes to plus and
in the functional we get A2,

Jo in the governing equation is alone. So it gets multiplied with A in the functional expression.
Like this, by intuition we can write the functional for a given PDE. But we can derive the functional



for the diffusion equation using the procedure that we have seen earlier. A half will appear with
the two terms because there is a square term. Again that is due to the rule that was mentioned

earlier.

Whenever there is a square term in the functional, half will get multiplied and if there is only A
term then there is no half there. So, the above equation is the expression for the functional of the
diffusion equation. Now, this equation is for the whole domain. So, if we discretize the problem

domain using the FE procedure then the expression of functional reduces to the following equation.
F(4) —lfimui’d ey f A%d —f Ad
=2 v 2]&) gA-dv JoAdv

3v 3 v v 3 3
=%ZZZ jiA‘f (7N, (e, ) - 7N, (x, 1)) Afdxdy+%ZjawZZ fA?Ni(x,y)Nj[x,y)Afdxdy

e i=1=13° i=1 j=1 §*
]
- jozz f N,(x, y)AZdxdy
e i=1gsg*°

The first summation in all the three terms is representing elements, because we are discretizing the
whole domain. So they are summations over all elements and the V2 term in the governing equation

results into nine terms for each element.

The corresponding nine entries of element coefficient matrix are represented with
fSeiAf (VNl-(x, y) - VN;(x, y))A]‘?dxdy. The two summations in the first term of the above

equation will give us entries of the element coefficient matrix multiplied by A4; and A4;. When we

minimize the functional, one of these A4;s or A;s will be cancelled.

Then after minimization, one entry of element coefficient matrix and the corresponding potential
will remain. So the final set of matrix equation is CA = B. The first term in the above equation is
going to give the element coefficient matrix. In the summation of the firstterm, ifi = 1andj = 1
then that will give us C;; and it will be multiplied by A%. When we minimize by differentiating
with respect to A, then one of the 'A;’s will be cancelled. So this will result in C;;A; in the final

linear system of equations.

We have seen this number of times. Then the third term in the above equation is also identical and

there is no change. So, this term will result into % and it will get apportioned to nodes 1, 2, and 3



for linear elements. Remember that in this formulation we are using linear elements not quadratic

elements.

The new or extra term here corresponds to % jw fvcrAZ dv term because we have seen the first and

last terms in Poisson’s equation also.
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In the diffusion term, if we substitute A in terms of Y>_, N;A4; then we will get the following term.

3 3
1 1
ijjaAZdv = EZ”‘”ZZ fAfNi(x,y)Nj(x,y)Afdxdy

v e i=1j=1ge

As explained here, (49)% = (N, AS + N,AS + N3 AS)? will give nine terms. Those nine terms are

represented with two summations as given in the above equation.

Again using the following formula in terms of N;, N,, and N5 the above integral is solved.

I'm!n!
———2A
(Il+m+n+2)

a

f (N, (1)) (Vo ()™ (N G, 7)) " dedy =

5

Here we are going back to the same old formula which is in terms of shape function, because in
this formulation we are using linear elements. Since the first and third terms of the functional



expression are same as earlier, we are concentrating on the second term which is given by the

following integral.

[ Wy axdy

sF
That means in the above formula, [ = 1, m = 1, and n = 0 and the solution of the above integral
is as given below.

N, N, (x,y)dxdy = o ope = &

[ 1 (G yIN; (x, y)dx Y= T

5¢

So, the off-diagonal entries for the diffusion term will be A¢/12. Diagonal entries will come when

i = j and the integral that corresponds to the diffusion term is given below.

1 e

2 2! ]
INE dxdy=@2ﬂ ZE

S@

Because, N? means [ = 2, m = n = 0 and the integral that corresponds to the diffusion term will
result in A®/6 as given in the above equation. So, A®/6 will be the diagonal entries. The element

level matrix equation after minimizing the functional will be given by the following equation.
[Ce1{A°} + jw[D?}{A%} = {B®}

In the above equation, [C¢]{A¢} and {B¢} are same as in Poisson’s equation. Here we have to note

that A° and B¢ are column vectors and they are enclosed in curly brackets.

The [D¢] is given by the following matrix

pe2 11
[pl=05(1 2 1
11 2

Using fSe N;(x,y)N;(x,y)dxdy, we have got the diagonal and off-diagonal entries. Only one A

appears in the final matrix equation because after minimization one of the A;s will go. So only one

A; will remain after minimization.
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The final matrix equation is [C£]{A°} = {B¢}. As compared to Poisson’s equation here, the
coefficient matrix is complex. We have to remember that here, A is a phasor because we are
formulating in frequency domain. In [B€¢], each of the entries is some function of J (current density)
which is also a phasor quantity. So the whole matrix equation is in phasor form. The entries of

matrices [C®] [B€] are same as earlier formulations.

Now, to bring the final matrix equation in a form like CA = B, we can consider that [C¢] = [C¢] +
jw[D€]. c in the subscript of [C£] stands for complex matrix. Then we finally get the following

matrix equation.
[CZ1{A°} = {B®}

In the above equation, the unknown variables are magnetic vector potentials. This matrix equation
is at the element level. Now we combine all the element level matrices by following the usual
procedure of formation of global matrices and then we would get the solution (nodal magnetic

vector potentials {A}) of the whole domain.

So, [C.1{A} = {B} is the global matrix equation. From this equation, we can calculate {A} as given

below

{4} = [c.]7'{B}



Before that we have to apply the boundary conditions. Remember that the B matrix was only
coming from current density (J). Till now the source is being represented in B matrix. But for a
problem domain in FEM there could be a boundary. So, we have to impose appropriate boundary
conditions as discussed in the previous lectures. Finally, we can solve this global equation in terms

of [C.]{A} = {B}.
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Now, we will quickly discuss two improtent points which we did not cover in basics of
electromagnetics and these are very important for time harmonic analysis. They are complex
permittivity and complex permeability.

The derivation given in the above slide are very simple and straightforward and it starts from
Maxwell’s equation. We know that Vx H = J + Z—':. In frequency domain, if we replace % by jw
Jby oE, and D by €,¢,.E we get V X H = oE + €,€,.E. Then take jwE as common and get the right

hand side of the curl equation as jwe, [fr — f] E. So we get the curl equation as given below.
0

VXH=jw60[er we]E
0

Now we will call this [er — a])—:] as complex permittivity as given below.
0



» [ jO’ r - I
E=¢€g € ———| =€ —jJe
WEQ

The complex permittivity has real and imaginary components. The imaginary component is
representing losses because it has a o term which represents finite conductivity of the insulation.
For example, a practical capacitor will be represented by a parallel connection of R and C elements
and an ideal capacitor will be represented with only pure C. So for an ideal capacitor we have only
e'. Ifitis a practical capacitor or a lossy capacitor, R also will be there and that will be represented

14

by €”.

Now, if we represent a lossy capacitor with the complex permittivity ¢’ — je”, then we can

formulate current as

Because, the current passing through a capacitor is I = jwCV, where C = Ed—s. Here, € = €' — je"

is a complex number, S is the cross-sectional area, and d is the distance between the electrodes.

Then the expression of current is simplified as given below.
wS
I = i [je' +€"]V

The above equation is the final expression of current. Now, one of the common diagnostic terms
for a capacitor is tan & which is defined as the ratio of the resistive component to the capacitive

component of the current and it is mathematically represented as

IR E”
tand = — = —
I €

The above expression of tan § is obtained by substituting the resistive component (%S eV) and

reactive component %S e''V of the current. The difference between circuit representation and field

representation is that the lossy component is represented by € (imaginary part) and the non-lossy

component is represented by €’ (real part).



The current passing through a lossy capacitor is represented by the following phasor diagram.

<Y

In the above figure, | is the resultant of resistive (I;) and reactive (I.) components of the current
and then we have § = 90 — 6. The tan ¢ is the ratio of the opposite side (Iz) and the adjacent side
(1;). The complex permittivity will be useful to find out losses in a dielectric material using FE
formulation. So, complex permittivity can be used in time harmonic analysis of dielectric matrial

with finite conductivity.

(Refer Slide Time: 30:16)
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The next concept is complex permeability. This will be derived by starting with V = N%. We

know that ¢ = BS and induced voltage can be written in the time-harmonic analysis as

V—NSdB— iwSNB
P TIE

We can rearrange the above equation to determine the expression of B as



Then we know that H = % and u = S. Now, determine the expression of permeability by using
the above expressions of B and H as given below.

H=FZ="N 7T

J
B _ (wSN) 4
H N ]
[
Then, ; = Z. By doing this, we are trying to find out the equivalent circuit for a lossy magnetic

material. Using complex permittivity, we represented an equivalent circuit for a lossy capacitor.

Going further, Z is replaced by R + jwL. Further, we simplify the permeability as given below.

bt
= T wsNz? = T LsN?

l R
R . L —_— L_ { — r__ g
(R+jwl) SNZ( ]w) K= ju

Then we get a real term (u')and an imaginary term (u'") for complex permeability. Here, we have

to notice that V' = +N% and it is from a circuit viewpoint and this we have discussed in basics.

V= NSZ—l: represents that V leads y or B by 90° as shown in the following phasor diagram.

VA
I, H

>
B

In the above figure, phasor V will lead B by 90°. Since we are talking about a lossy case I will lag
V' by some angle 6. The moment we have u'’ then the material is representing a lossy magnetic

material. That means, in the corresponding circuit, I will lag V by some angle 8. Here, we will

have VI cos 8 as the corresponding loss.



If the material is purely inductive and lossless then this angle 8 will be 90° and if it is a perfect
resistive material then the angle 6 will be zero. Now this loss corresponds to hysteresis loss in the

material and in the case of hysteresis phenomena, H leads B by some hysteresis angle 6;,.

(Refer Slide Time: 34:23)
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To further understand elliptic or complex permeability, let us now study the original hysteresis

curve which is in blue color in the following figure.

05 T ——. |
S Y
- A" ”‘ |
> [
- f /
,.'/ 4 "'
= Y/ /
>0 ‘
] gr /4
5
g
J e
/ 7
/ Z
/ o
| —
i
0.5 W . i J
-30 -20 -10 0 10 20 30
H (A/m)

As we know, for a ferromagnetic material there is a hysteresis angle between B and H. So, H goes

to zero first and then B goes to zero when the curve is traversed in anticlockwise direction. Now,

we plot B and H with time separately as in shown in the following figure.
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If we force B to be sinusoidal which can be done during the experimental measurements then H

has to be non-sinusoidal as per the blue hysteresis curve in the previous diagram.

Here, H is having a fundamental component as well as some harmonics. In the above figure, H
(dotted waveform) also represents the corresponding harmonics. These harmonics are not available
for time harmonic formulation. In time harmonic formulation, all the field quantities or field
variables should be sinusoidal at one frequency. So in this analysis, we can neglect the harmonics
in the H field and we only consider its fundamental component. If we do that, then we get H

waveform as sinusoidal as shown in the following figure.

ISR, WSSy SN ——

In the above figure, both B and H fields are sinusoidal and now we can use time harmonic
formulation and the corresponding BH loop will be elliptical as given by orange loop in the
previous figure and that loop is having both B and H as sinusoidal with fundamental components

only. Although we have neglected harmonics in H, the hysteresis angle (6;,) is preserved.

Then, with this simplification and the assumption that harmonics in H being neglected, we get the

BH curve as given by orange color and the corresponding permeability is called as elliptic or



complex permeability. The time harmonic formulation in terms of complex or elliptical
permeability which was discussed on the previous slide can be used to calculate losses in the
frequency domain FEM analysis. We will stop here and continue our discussion on diffusion

problems in the next lecture.
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L27: Review Questions

1. While solving diffusion equation in time harmonic representation,
what field vector should be taken as the reference phasor in the

formulation? I Bombay
2. The loss component of complex permeability is its imaginary part, i

whereas the loss component of impedance is its real part, why?
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