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Quadratic Finite Elements 

Welcome to the 26th lecture. In this lecture, we will see quadratic or second order elements. As 

mentioned earlier, linear elements may not be good if the field is varying drastically in some 

regions of the problem domain. If you don’t want to use a very fine mesh with linear elements, 

then you can use a coarser mesh or with higher order elements for the same accuracy of the 

solution.  
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For a linear triangular element, we have seen the expressions of 𝐵, 𝐵𝑥, and 𝐵𝑦 which are given in 

the above slide. Also in one of the previous lectures, we have seen that 𝐵𝑥 =
𝜕𝐴𝑧

𝜕𝑦
 and 𝐵𝑦 =

𝜕𝐴𝑧

𝜕𝑥
.  

We also saw that these expressions are constants because A1, A2, A3 are nodal potential values that  

would have got after the FEM solution. Q1, Q2, Q3 and P1, P2, P3 are also constants because they 

depend on the coordinates of the vertices of the element under consideration. So Bx and By are 

constant over an element which may not be true in case of highly non-uniform fields and the errors 

will be appreciable. So we have to go for second order or quadratic formulation.  
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An example of quadratic triangular elements and the corresponding approximation are given in the 

above slide. In the figure given in the above slide, you can see that there are six nodes. The three 

nodes (1, 2, and 3) are usual nodes that we have seen in the previous lecture. Nodes 4, 5, and 6 are 

at the centres of the three edges of the triangle. Since there are six nodes the approximate potential 

function should have six unknowns a, b, …, f and the corresponding approximation is given in the 

following equation. 

 

Then, you can use the same procedure that we followed for linear triangular element to determine 

the FE formulation. There the expression of 𝜙 is expressed in terms of 𝜙1, 𝜙2, and 𝜙3 by 

eliminating a, b, … f which involves inversion of a matrix. By eliminating the constants a, b, …f 

we get the  following expression.  

 

You can do the same thing for quadratic elements also. But we will have to invert a 6 × 6 matrix 

to eliminate the constants a to f and with this the computational burden is becoming higher. Here 

we will use a simpler method called area coordinates approach and this does not require any matrix 

inversion.  
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This approach uses area coordinates or natural coordinates and they are defined as given below.  

 

 Now, what is ∆1? 
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Let us consider a triangular element shown in the figure given in the above slide with nodes  1, 2 

and 3. Consider a point p inside the element. 𝐿1 is defined as 
∆1

∆
, here, ∆ is the area of the whole 



triangle formed by nodes 1, 2, and 3 and ∆1 is the area of triangle formed by nodes P, 2, and 3. So 

𝐿1 is defined as the area of the triangle formed by nodes P, 2, and 3 divided by the area triangle 

formed by nodes 1, 2, and 3.  ∆2 is the area of triangle formed by nodes P, 3, and 1. Again if you 

see here the sequence of nodes is P 3 1 and it is not written as P 1 3 because the area will become 

negative. Generally, when you calculate the area of a triangular element we have to take the three 

nodes in anticlockwise fashion. Similarly, ∆3 is the area of triangle formed by nodes P, 1, and 2. 

Also, remember that ∆1 + ∆2 + ∆3= ∆. This is obvious because 𝐿1 is a function which is divided 

by the total area.  So the addition of all these L1, L2, L3 will be given as  

 L1 + L2 + L3 =
∆1 + ∆2 + ∆3

∆
= 1 

In fact for linear triangular elements, we have seen the following expression of 𝑁1many times. 

 

Similarly, we saw the expressions 𝑁2 and 𝑁3 for other nodes.  

If you take this 1/2 inside the bracket that will give the area of the triangle formed by P, 2, and 3. 

So that is why for a linear triangular element 𝐿1 = 𝑁1.  That means  when we saw the procedure 

for a linear triangular element we need not have inverted the 3 × 3 matrix to eliminate a, b, and c 

and we could have directly use this property and derived the shape functions. We did not use it 

there because we have not seen the theory of natural coordinates and there we wanted you to 

understand the general procedure of FEM. So that is why we have taken the inversion there. But 

using this approach we can directly get the expression for 𝑁1 by just calculating the ratio of areas 

of two triangles. 
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Similarly, we can write the expressions of 𝑁2 and 𝑁3. That is why for a linear triangular element 

we can write a general expression of shape function in terms of area coordinates as given in the 

above slide. For 𝑖 = 1 that is node 1, a1
1 = 1 and other constants are zero because 𝑁1 = 𝐿1. 

Similarly, for 𝑖 = 2, 𝑁2 = 𝐿2  and that is why a2
2 = 1 and other constants are zero. Similarly, 𝑁3 

can be determined by using the generalized expression which is given in the above equation. So 

𝑁𝑖 can be represented  as a general function of 𝐿1, 𝐿2, and 𝐿3.  The corresponding coefficient 

values for each shape function are also given in the above equation.   
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Now for a quadratic element we can extend the generalized expression that we have seen earlier 

as given below. 

 

For a linear element, 𝑁𝑖 was a function of only the three terms 𝐿1, 𝐿2, and 𝐿3. Now it is a quadratic 

element with six nodes and so we need to have six coefficients so that is why the generalized 

expression will have extra terms as given in the above equation. It is natural to have 𝐿1𝐿2, 𝐿2𝐿3, 

𝐿3𝐿1 to get quadratic terms in the shape function. So 𝑁𝑖 is not only a function of  𝐿1, 𝐿2, and 𝐿3 as 

linear function but also their products. Now, for each node  a𝑖
1, a𝑖

2, …, a𝑖
6 are unknowns.  

Remember that for shape function at every node there are six unknowns.  

We have already seen that at node 1 the value of 𝐿1 is 1, 𝐿2 = 0 and 𝐿3 = 0. Similarly, for the 

other two nodes. At node 4, 𝐿1 and 𝐿2  are equal to 0.5 and 𝐿3 is 0 because 𝐿2 at node 4 will be 

∆413/∆ and ∆413= 0.5∆  and that is why 𝐿2 = 0.5. Similarly, you can calculate the rest of the 

coefficients. In the following figure, we have calculated the values of 𝐿1, 𝐿2, and 𝐿3 at all the 

nodes. 
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Now, we will use the values determined in the previous slide to calculate the six coefficients for 

every node. We need six equation or six conditions because we have to determine six coefficients 

for every node. 𝑁1 = 1 at node number 1 and it is 0 at all other five nodes. So, we substitute the 

values of all the coordinates where the values of 𝐿1, 𝐿2, and 𝐿3 are known in the expression of 𝑁1 

as given below to calculate the unknown constants.  



 

For example, 𝑁1 and 𝐿1 at node 1 is 1 and the values of 𝐿2 and 𝐿3 are 0. So all the terms except 

the first term will go down to 0 as given in the following equation.  

 

So that is why you will the value of a1
1 = 1. Similarly, using the values at nodes 2 and 3, we will 

get a1
2 = a1

3 = 0.  

Then let us take the value of 𝑁1 = 0 at node 4 by definition and property of shape function. Now 

at node 4, we have to substitute all these values of 𝐿1 to 𝐿3 as given below. At node 4, 𝐿1 = 𝐿2 =

0.5 and 𝐿3 = 0.  

 

After simplification, you will get the following expression and the values of a1
1, a1

2, and a1
3 are 

already calculated. Using these values, a1
4 is calculated as given below. 

 

 Likewise, you can calculate the remaining two coefficients also.  
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Substituting the values of a𝑖
1 to a𝑖

6 in the generalized expression of 𝑁1, we will get the shape 

function of 𝑁1 as given below.   

 

See the difference, for linear element 𝑁1 was just equal to 𝐿1, but for quadratic element 𝑁1 =

𝐿1(2𝐿1 − 1).  

Likewise, we can obtain the expressions for other shape functions as given below.  

 

These expression can be verified by following the procedure that was explained earlier.  
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Suppose we want to solve this Poisson’s equation in magnetostatics which is defined as ∇2𝐴 =

−𝜇𝐽. As we discussed earlier, 𝜇 should not be associated with J because mu can vary with space 

in the given geometry. So we bring 𝜇 on the left hand side and we associate it with ∇2. When we 

integrate, depending upon which element we are considering the corresponding 𝜇 will be taken for 

that element. The following equation defines 𝑐𝑖𝑗 expression. 

 

 The dimensions of the element coefficient matrix will be 6 × 6. The entries of 𝑏𝑖
𝑒 of the right hand 

side matrix which represents the source are defined by the following equation.  

 

Earlier when it was a linear element we apportioned J equally to the three nodes as 𝐽∆/3. For 

quadratic elements, that J gets apportioned equally to the middle nodes of each node but not to 

nodes 1, 2, and 3. So the entries of 𝑏𝑖
𝑒 are defined as given below. 

 

We will see the derivations of these terms later.  
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[𝐶𝑒] is a symmetric matrix. The element level matrix entries 𝑐𝑖𝑗
𝑒  are given in the above slide and 

the next slide. From the above slide, we can see that 𝑐11 for this case is identical to the linear 

triangular element. But off diagonal entries like 𝑐12 are different. Again 𝑐15, 𝑐26, and 𝑐34 are 0 

because there is no connection between the corresponding nodes.  

That means, there is no connection between nodes 1 and 5, nodes 2 and 6 and nodes 3 and 4. At 

the bottom of this slide, we have given one reference book titled ‘The finite element method in 

electromagnetics’ for high frequency electromagnetic mostly. If you want to verify the expressions 

of these entries you can refer this book. Some of these coefficients are already derived and we will 

see in the next lecture.  
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You do not have to be worried about the expressions given in the above slide because deriving 

them is a one-time effort if you develop a code to form element coefficient matrix that can be used 

for any problem as we have seen earlier. Now we will see the derivation of some of these 

coefficients that we have seen in the previous slide.  
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For example, we know the following expression for 𝑐𝑖𝑗.  



 

𝑐11 can be evaluated by replacing i and j with 1 and 1 so 𝑐11 will be simply given by the following 

expression. 

 

In the previous slides we have derived the expression of 𝑁1 as 𝐿1(2𝐿1 − 1) and 𝐿1 = ∆𝑝23/∆.  We 

had already seen the following expression of 𝐿𝑖.  
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So if you substitute the expression of 𝐿1 in 𝑁1 = 2𝐿1
2 − 𝐿1, we get 

𝑁1 = 2 L1
2 – L1 = 2 (

1

2∆
(𝑎1 + 𝑃1𝑥 + 𝑄1𝑦))

2

−
1

2∆
(𝑎1 + 𝑃1𝑥 + 𝑄1𝑦) 



The value of 𝑐11 is determined by evaluating the first derivative 𝜕𝑁1/𝜕𝑥 and it is given by the 

following expression.  

 

Then, you resubstitute 𝑎1 + 𝑃1𝑥 + 𝑄1𝑦 with 2∆𝐿1 based on the expression of 𝐿1 and we finally 

get the following simplified expression.  

 

Then the expression of 
𝜕𝑁1

𝜕𝑥

𝜕𝑁1

𝜕𝑥
 is given below 
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Similarly, you can calculate 
𝜕𝑁1

𝜕𝑦

𝜕𝑁1

𝜕𝑦
 as given below.  

 



In contrast to the expression of 
𝜕𝑁1

𝜕𝑥

𝜕𝑁1

𝜕𝑥
, you will have 𝑄1 instead of 𝑃1 and that is the only 

difference. Because the derivateive of 𝑁1 with respect to x we will give 𝑃1s and derivative with 

respect to y will give only 𝑄1s. So for 
𝜕𝑁1

𝜕𝑦

𝜕𝑁1

𝜕𝑦
 you have expressions with only 𝑄1s . So 𝑐11 is equal 

to the integral of sum of the two terms 
𝜕𝑁1

𝜕𝑥

𝜕𝑁1

𝜕𝑥
 and

𝜕𝑁1

𝜕𝑦

𝜕𝑁1

𝜕𝑦
 as given below.  

 

Now the integrand in the above equation has six terms. The above integral is evaluated by using 

the following equation. 

∬(L1)𝑙(L2)𝑚(L3)𝑛 𝑑𝑥𝑑𝑦 =
𝑙! 𝑚! 𝑛!

(𝑙 + 𝑚 + 𝑛 + 2)!
2∆ 

We have seen this formula earlier and now actually for each of the terms in the integral of 𝑐11 if 

you use the above formula, we will get the final expression of 𝑐11. For example, in the first term 

4𝑃1
2

∆2  you have 𝐿1
2  that means 𝑙 = 2 and 𝑚 = 𝑛 = 0 and if you substitute these values in the above 

formula you will get  

∬
4𝐿1

2𝑃1
2

∆
𝑑𝑥𝑑𝑦

 

 

=
4𝑃1

2

∆

2!

4!
2∆ 

Likewise, you can calculate the integrals of all the terms using the above formula and then you can 

simplify as given below. 

 

 We will stop here and continue in the next lecture.  
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