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Calculation of Leakage Inductance of a Transformer 

 

Welcome to the 23rd lecture, we will continue our discussion on applications of the finite 

element method. First, we will see leakage inductance calculations of a transformer and then 

we will also see the calculation of magnetizing inductance of a rotating machine.  

(Refer Slide Time: 0:37) 

 

Now, we talk about the calculation of leakage inductance of a transformer. In finite element 

simulation, for a three phase transformer we take only one window with LV winding which is 

masked by flux contours and the high voltage winding as shown in the following figure. We 

actually force the ampere turns to be equal and opposite in the FEM simulation. 



 

So, 𝑁1𝑖1 = 𝑁2𝑖2 and we make one of the ampere turns as minus so that net ampere turns 

enclosed by any contour in the core portion will be 0. So, that is why in the above figure we 

will see there is not a single flux contour which encloses both the windings. In the figure, you 

can see that so many contours are enclosing the LV ampere turns, and the rest are enclosing 

HV ampere turns, but there is no single flux contour which is enclosing both windings. 

But practically this is not the case because there are magnetizing ampere turns and that is why 

you will get some magnetizing flux (or no load flux) in the core which moves around the core 

and encloses both windings. This flux is responsible for induced voltage in both windings. So 

that is why in FEM it is important to know what we want to model. Accordingly define the 

parameters which may not be the true case practically. For example, you will never have, 

transformer working with full currents being passed through both windings with zero 

magnetizing ampere turns. This condition would not be there because a practical core requires 

some ampere turns to magnetize. Since magnetising ampere turns are negligible and we are 

interested only in leakage field and the corresponding leakage inductance, so we are neglecting 

magnetizing ampere turns. 

Effectively in the transformer equivalent circuit, we are assuming the magnetizing inductance 

as infinity, because the magnetizing current is 0. I hope you understood the leakage field plot 

shown in the above figure.  Now, we will go to the following expression of inductance that we 

have seen in basics of electromagnetics. 

𝐿 =
𝜇𝑁2𝐴

𝑙
=

𝑁𝜓

𝑖
 



The above expression of L can be represented as 
𝑁2

ℛ
  (ℛ is the reluctance) because 

𝑙

𝜇𝐴
 is the 

reluctance. Of course that time we had used S instead of A and they represent the area.  

If you are confused with the symbol of magnetic vector potential, then better you can represent 

area with S. Now, this A is the area of the flux tube and 𝑙 is the height of the corresponding 

flux tube. Generally, we consider the flux 𝜓 in the above expression is linked by all the N turns. 

But there could be a case that we will see later, turns in the winding may not link with the same 

amount of flux. 

That is why the area does not represent the actual physical area. The area is calculated by 

integration of flux linkages. Now if you want to calculate the leakage inductance, it is always 

better to understand analytical calculation which may be approximate because for FEM 

analysis, we should be clear about the background principles, so that we do not make any 

mistake in the simulation.  

For example, the flux plot in the window can be approximated as shown in the above figure 

with LV and HV windings as indicated. In the figure you can see that there are end effects 

because the flux is fringing at the ends of the winding. With such fringing, it is difficult to find 

inductance by using a simple analytical formula. So we have to make some approximation, 

here we are approximating that the flux is entirely axial as shown in the following figure.  

 

Effectively, we are increasing the height of the flux tube, because at the ends beyond the 

winding height there is flux, so the height of the flux tube (Heq) is effectively more than the 

physical height of the coil. So the flux region beyond the winding height is accounted by some 

extra height of the flux tube, which is more than the height of the winding (HW). 
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Going further in the plot shown in the above slide, we can see that in the gap between the LV 

and HV windings, the flux is uniformly spaced. But as you go away from the gap i.e, into the 

windings, the flux is initially closely spaced and then it is sparsely spaced. Because as you go 

away from the gap, the ampere turns enclosed by any flux contour would be reducing. Also, 

we know that we are neglecting magnetizing ampere turns, that means we are effectively 

making the permeability of core as infinite.  

If permeability is infinite, 
𝐵

𝜇
 is tending to 0, so H will tend to 0 in the core part. So that means 

if you evaluate ∮ 𝐻 ∙ 𝑑𝑙 = 𝑁𝑖 which is the ampere circuital law, since there is hardly any H in 

the core, if you take any closed contour the Hl drop will be only in the window region which 

is made of  air which is non-magnetic and LV and HV windings that are made up of copper are 

also nonmagnetic.  

So in the winding regions also 𝜇𝑟 ≈ 1. If you take any contour and calculate ∮ 𝐻 ∙ 𝑑𝑙 along that 

contour, that value will be contributed by the flux lines or field values in the window portion.  

That is why any of the flux contours which are enclosing either full LV turns or full HV turns 

are enclosing the same turns.   

The number of turns enclosed by any of the contours in the airgap region shown in the above 

slide is same, so H value will be the same in the entire gap. Now, as you go inside the winding, 

either through the LV winding or HV winding progressively, any of the flux lines will go on 

linking the lower ampere turns.   



Remember the current in one of the windings is into the paper and in the other winding current 

is out of the paper because this is a 2D simulation.  

If ampere turns are less, 𝑁𝑖 is less and so H will be less and the corresponding B will be less. 

So that is the reason you get the magneto motive force (MMF) diagram as shown in the 

following figure.  

 

𝐻𝑙 is constant in the air gap region and as you go into both the windings then H would reduce 

and it will go to 0 at the end points of the two windings. Because at the two points the ampere 

turn enclosed by this flux line will be 0.  

Now, we have to calculate the total inductance because of all the leakage fields, which is our 

objective, using the following expression.  

 

Since the flux is uniform in the air gap region the corresponding contribution by that gap is 

𝑇𝑔𝑎𝑝𝜋𝐷𝑔𝑎𝑝, where, 𝐷𝑔𝑎𝑝 is the mean diameter and 𝜋𝐷𝑔𝑎𝑝will give the circumferential length  

and when it is multiplied with 𝑇𝑔𝑎𝑝, width of the air gap will give the corresponding cross-

sectional area of that gap.  
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The cross sectional area through which the flux is crossing will be given by 𝜋𝑇𝑔𝑎𝑝𝐷𝑔𝑎𝑝. In the 

above slide, we will understand the area of the air gap through which the leakage flux is 

passing. Now, let us consider the LV-HV gap. From the top, the LV HV gap will be seen as 

shown below. 

 

𝑇𝑔𝑎𝑝 is the thickness or width of the gap and  𝜋𝐷𝑔𝑎𝑝 is the circumferential distance as indicated 

in the above figure. Now, if you develop the area in the above figure along a horizontal line, 

then the area would be as shown in the following figure and at the considered instant of time 

flux is directed in the upward direction.  

 

In the developed area shown in the above figure the flux is represented by dots. Then the area 

of the LV HV gap through which the leakage flux crosses would be 𝜋𝐷𝑔𝑎𝑝𝑇𝑔𝑎𝑝 where 𝜋𝐷𝑔𝑎𝑝 

is the length and 𝑇𝑔𝑎𝑝 is the width of rectangular area. So the cross sectional area that 

corresponds to this LV HV gap through which the leakage flux is crossing is shown in the 

above figure. 𝜋𝐷𝑔𝑎𝑝𝑇𝑔𝑎𝑝 is the corresponding cross sectional area through which the leakage 

flux is passing. But in the above expression of inductance the 𝑇𝐿𝑉 and 𝑇𝐻𝑉 are the corresponding 

radial depths of LV and HV windings and 𝐷𝐿𝑉 and 𝐷𝐻𝑉 are the corresponding mean diameters 

of LV and HV windings.  Also in the above expression, one third appears, why? 

Because flux is not uniform in the winding regions and if you integrate the flux linkages over 

the LV or HV areas and after some simplifications, you will get this  1/3 term and this is obvious 

because the flux lines or density of flux lines is reducing. So it is quite logical that the factor 

will be less than 1 and its value comes close to 1/3.  The derivation is given in the third chapter 

of the following book.  

 



So, you should understand that the area term that appears in the inductance formula will have 

the 1/3 factor because of non uniform spaced flux lines in LV and HV windings and for the 

gap there is no 1/3 term because the flux is uniform in the gap and any of the flux lines in the 

gap is linking the full LV or HV ampere turns.  

Going further, now we need to worry about the  height or length of flux tube and we already 

discussed that we should only consider the axial field and increase the height of that flux tube 

which should be more than the physical height of winding to consider the fringing fields. This 

is considered by  using the following empirical formula. 

 

Here, 𝐾𝑅 is the Rogowski factor and 𝐻𝑤 is the physical height of the winding which increases 

to 𝐻𝑒𝑞 which is given by 𝐻𝑤/𝐾𝑅 and the value of 𝐾𝑅will be less than 1. That is why 𝐻𝑒𝑞 > 𝐻𝑤. 

Again 𝐾𝑅 is a function of radial depths and heights of the windings. This expression is used to 

find the effective height of the flux tube by neglecting the fringing effects and considering only 

the axial field.  

(Refer Slide Time: 16:14) 

 

Now before we see the FEM formulation let us not go into details of all these dimensions and 

co-ordinates which are shown in the above slide. In the geometry, there are two windings (LV 



and HV winding) and corresponding radial depths and mean diameters are given in the above 

slide. Remember we have modelled only one phase and there will be other phases also. But we 

do not have to model them because we can get the per phase value of inductance by considering 

the window model of the windings shown in the above slide.  

(Refer Slide Time: 17:00) 

 

Now, we substitute all the values of radial depths and mean diameters in the following 

expression 

 

All the values given in the above slide are in centimetre here, that is why it is multiplied by 

10−4 in the following equation because  the product of radial depth and mean diameter is in 

cm2 so we converted into m2 by multiplying with 10−4.  

 

Using the above expression, you can calculate the area of cross section for the flux tube. 𝑙 is 

the length of the flux tube. The equivalent length of the complete axial flux tube is 
1.52

0.965
=

1.575. Now this 1.52 and 1.575 are in metres and 0.965 is the Rogowski factor and the height 

of the equivalent flux tube is 1.575 which is more than the physical height of the winding (1.52 



metres). Then you substitute the values of 𝐴 and 𝑙 in the following expression of 

L(=
𝜇𝑁2𝐴

𝑙
).  The number of turns N in the above expression is the HV turns.  

If you take LV turns as N, then you will get the value of inductance refered to the LV side. 

Here we are taking HV turns so the calculated inductance is referred to the HV side.  Remember 

the area (𝐴) is the effective area of the whole flux tube.  

Now we calculate the inductance by using finite element method. For the sake of completeness 

all the parameters of this transformer are: 3 phase 31.5 MVA 132/ 33 kV transformer, vector 

group is Yd1 which says that HV is star winding, LV is delta winding, and vector group is 1, 

frequency of excitation is 50 Hz, and HV current is 137.78 A which can be calculated based 

on the transformer rating.  

The number of turns in HV winding is 980 and that in LV winding is 424 and the radial depth 

and mean diameters are given in the following table 

 

We have used the above parameters in the analytical formula. In the analytical formulation, we 

are not considering the LV-core gap and HV -core gap because there is no flux in these regions. 

So that physical area does not contribute to the area in the expression of inductance, even in 

this case  we have made all the radial fringing flux as vertical, so effectively there is no flux in 

this area and it is an approximation in the analytical formula. We do not have to do this 

approximation in FEM and it will be considered on its own. Then we have already defined all 

the geometrical parameters and we have 𝑁𝐿𝑉𝐼𝐿𝑉 = 𝑁𝐻𝑉𝐼𝐻𝑉, so 𝐼𝐿𝑉 can be calculated from 𝐼𝐻𝑉 

by using the relation of ampere turn balance. So that we are exactly matching the ampere turns. 

Even if there was some difference, for example, if you make 318.2 instead of 318.45 then the 

entire flux will be in the core and there will be a lot of magnetizing flux. That means the small 

difference in ampere turns will result in magnetizing ampere turns and field is high since the 

core permeability is defined as very high. So even a very small difference in ampere turns will 

set up a reasonably high flux density in the core, that is why we need to exactly match the 

ampere turns in the FEM simulation to calcualate leakage inductance.  
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Now we will see how do we calculate the inductance using  a Scilab code. In this slide we are 

only explaining extra parts of the code that is required for this problem and the rest of the code 

remains same. As compared to the magnetostatic code that we saw in the previous lecture,  here 

we have to define ampere turn density in the windings and it is the main new thing. For example 

here, HV turns and current is 980 and 137.78 A respectively, similarly LV turns is 424. LV 

current is calculated on the previous slide, area of cross-section is calculated by multiplying 52 

mm (radial depth) and the height LV and HV windings. The corresponding code to calculate 

HV and LV ampere turn densities is given below. 

 

We have defined the ampere turn density.  Now we have to set up an element wise for loop to 

go across all the elements and check which of those elements lie in this sub region number 4 

which corresponds to LV. This we would have assigned while generating mesh using Gmsh 

software. At that time, we would have defined LV as sub-region number 4, so automatically 

all the elements in the LV will get the sub-region number 4. For all those elements which are 

in the LV region we will define ampere turn density by dividing ampere turns of LV with LV 

area. Always remember that when number of turns is more than one turn then you have to 



consider ampere turns divided by area as the current density and it is not just current divided 

by the area. So ampere turns divided by area is J. Similarly we define ampere turn density for 

sub-region number 3 which corresponds to HV. The following part of the code is used to define 

the ampere turn density.  

 

In the above code you can observe that there is a minus sign for the current density of HV, that 

means ampere turns of HV are taken as negative of ampere turns of LV which effectively 

means that the current directions of LV and HV are in the opposite directions. If current of LV 

is going in, the current of HV will come out. So the net ampere turns will be 0 and that is why 

there will not be any magnetizing ampere turns in the core, which is essential to calculate the 

leakage inductance of a transformer. If we are analysing the core, then the magnetizing ampere 

turns are important. Analysis under no load condition is an example.  

(Refer Slide Time: 25:07) 

 

After getting the solution (nodal potential and flux density values) by following the normal 

procedure that we have seen, we can calculate the energy stored in each part of the problem 

domain. In the code given in the above slide, the energy is calculated in the core first. In the 



code, B2 is associated with each element and 
𝐵2

2𝜇
 is the energy density which is nothing but 

energy per unit volume. Now we have to multiply this energy density by volume. In this code, 

we are multiplying by area and later multiply by mean 𝜋𝐷𝑚 (𝐷𝑚 is the mean diameter) to 

calculate energy from the energy density. Similarly, energy stored in LV and HV windings can 

be calculated using the same procedure for the corresponding elements in sub-regions 1, 2, 3 

and 4. 

(Refer Slide Time: 25:56) 

 

The corresponding energies per unit length for each element are calculated in the previous 

slide. The total energy associated with the core is calculated by multiplying total energy per 

length with 𝜋𝐷𝑚 which is the circumferential length. So, we multiply the area with 

circumferential length to get the volume.  By multiplying the volume with the corresponding 

energy density (
𝐵2

2𝜇
) would give you the energy. 

Similarly, the energies in the other three regions, air gap which means the gap between the LV 

and HV windings which is the main contributor of the energies and then the third and fourth 

contributors are HV and LV windings. Then we are adding all the energies and we are 

displaying them in the console using the code given in the above slide. The energies in the 

different regions are given in the following table.  



 

From this, we can observe that the LV-HV gap has the maximum contribution in the total 

energy. The reason is obvious, you can see the following flux plot,  all these flux lines which 

are uniformly spaced and the flux density will be maximum. Also, the radial depth and mean 

diameter of the HV winding are more compared to LV winding, so the area of HV will be more 

compared LV, that is why the energy of HV is more than LV. Then the total energy is calculated 

by summing up energies of all the regions and then you equate it to 
1

2
𝐿𝐼𝐿𝑉

2  to calculate L. The 

calculated total leakage of inductance of the transformer is referred to HV side and since we 

used HV current to calculate inductance form energy. 
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In this slide, you can see the comparison of the leakage inductance values calculated by using 

the analytical formula and the developed scilab code. In the above slide, you can see that they 

are quite close to each other and this verifies the both approaches of calculation (analytical and 

FEM). In analytical formulation, we did a number of approximations and the main 

approximation is considering the leakage field as axial. 

Whereas in finite element method this approximation is not required and the flux can be axial 

as well as radial. However, in FEM also we approximated the field as two dimensional, but the 

actual field is three dimensional. In this problem, we have taken only one cross-section, so to 

that extent the value calculated by using 2D FEM will have an error as compared to more 

accurate 3D field based computation.  

You can also use freeware FEM software as listed below and corresponding website links are 

given. For magnetostatic, electrostatic and even time-harmonic eddy current problems, some 

of these software can be used easily to compute performance parameters. Those who are 

interested they can go to the given websites, download the software and try such simple FEM 

simulations and then you can use them for more complicated problems. 
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Now before going further into other problems like motor analysis, let us quickly see the 

analysis of a transmission line conductor. In typical power system books, they will calculate 

the inductance of a conductor.  

In any conductor, there is internal and external flux. The internal flux will contribute to internal 

inductance (𝐿𝑖𝑛𝑡) and the flux which is outside the conductor will give the external inductance 

(𝐿𝑒𝑥𝑡) of the conductor and the total inductance of the conductor will be 𝐿𝑖𝑛𝑡 + 𝐿𝑒𝑥𝑡. In this 

slide, we are calculating the internal inductance.  

Again, we calculate the stored energy inside this conductor because of the internal flux. How 

do you do that? 

H at any point (radius) inside the conductor is given by the following expression. 

 

Here, the radius is 𝜌 in cylindrical coordinates and R is the conductor radius. The above 

expression is derived by evaluating the integral of the following expression. 

 

Here, the right hand side of the above expression will be the current enclosed. The expression 

of H can be derived by rearranging the terms in the above equation. The stored energy density 

will be 
1

2
𝜇0𝐻2, why 𝜇0?  

The current-carrying conductor is made of copper, so 𝜇𝑟 ≈ 1. Then substitute the above 

expression of H, you will get  

 

The above expression of stored energy will be energy density i.e, energy per unit volume. The 

energy can be calculated by integrating the above expression over the volume of the conductor 

as given below. Here, 𝜌𝑑𝜌𝑑𝜙𝑑𝑧 is the incremental volume in cylindrical systems.  



 

Remember, we are considering dz = 1 because we are doing per meter depth calculations, that 

means the determined values are for a 1 metre length of the transmission line in z direction. 

Because the 2D representation of conductor shown in the above slide is like a 𝜌 − 𝜙 plane and 

you do not see the z direction. So that is why dz is taken as 1 or we integrate along z from 0 to 

1. If you simplify the above integral, you will get stored energy as given by the following 

expression.  

 

Then you equate this energy to 
1

2
𝐿𝐼2 to calculate as given below. 

 

Here, you can see the value of internal inductance is constant and it is not a function of 

geometrical details. If you increase the radius of the conductor, the total stored energy will 

remain same (
𝜇0

16𝜋
𝐼2), because the current is constant and that is why the 𝐿𝑖𝑛𝑡 is always 

constant. This ends lecture number 23. In lecture 24, we will see calculation of magnetizing 

inductance for a rotating machine. Thank you. 
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