Electrical Equipment and Machines: Finite Element Analysis
Professor Shrikrishna V. Kulkarni
Department of Electrical Engineering
Indian Institute of Technology, Bombay
Lecture 21
Computation of B and H Field and Method of Weighted Residuals
In the previous lectures, we saw 2-dimensional FE formulation in terms of magnetic vector
potential. We saw the procedure to calculate A, because a 2-dimensional formulation is developed

in terms of A,. But our main purpose is to get B and H fields.
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In this lecture, we will discuss a way to calaculate B and H using computed A, values. We know
already that A in an element is defined as N;A; + N,A, + N;A; and if you substitute the

expressions of Ny, N, and N3, you will get the following equation.
Ae - Nliqf + NzAg + Ngtqg

1
= ﬂ{[{xz}’a — x3¥2) + (¥2 — ya)x + (x3 — x2)v]AT +
[(xayy — x1¥3) + (v3 — y)x + (xg — x3)y]AS +
[(x1y2 — 22y1) + (1 — ¥2)x + (x; — x3)y]AS}
Then as we did in the previous lecture, by replacing y, — y3, y3 — y1, y1 — ¥ With P;, P,, and Ps

and x; — x5, X; — X3, X, — x1 With Q4, Q,, and Q3, the above equation can be written as



1
Af = ﬁ{[(xz}’g — x3y2) + Pyx + Quv]AT +

[Cx3yy — x1v3) + Pox + Q,y]AS+
[(x1¥2 — x2¥1) + P3x + Q3y] A5}
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We know that B¢ = V x A€ is represented with the following determinant
a, a, a,
Ee:\;rxp;-’:i 9 E:aAzﬁx_aAzﬁy
dx dy 0z dy dx
0 0 A4,

Here, we have only A, component because x and y components of A are 0. So V x A® will reduce

04, ~  0Ag ~ ~ L .
to ayz a, — axZ a,.So, Bhas a, and a, components, which is the case because the current is in

z direction, so A is in z direction. This we have seen in the basics of electromagnetics.

A . 0A
2 and B, component is a_xz' If you

In the above equation, you can notice that B, component is aay

substitute the expression of A, which we saw in the previous slide, then the magnetic flux density

reduces to

_ 1
B® = ﬁ{("ﬁQl + ASQ; + A3Q5)a, — (AP, + ASP, + A3P5)d,}



So the variation with respect to x is A{P; + ASP, + A% P; and variation with respect to y is ASQ; +

5Q2 + A50Q3

The terms x,ys; — x3V,, X3y, — X1¥3, and x;y, — x,y;Will not count for B because they are
constant. So derivatives of these terms will be 0. Then the magnitude of B? is given by the

following equation.

1

Be 2_ =
(B°)"= 113

{(A3Q, + A3Q,+A5Q3)® + (ATP; + ASP,+ASP;)%}

Then you can calculate Hy and Hy by using the following equation.

e B-f B; ey2 8 ?
Hy = o Hy=0 = |HI = [(12) + ()

As we discussed earlier, we can assume permeability over an element as constant so the expression

of H will be straight forward.

(Refer Slide Time: 03:47)
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In basics of electromagnetics, we discussed why energy density is fB HdB. For the sake of

completeness, again we are discussing in this slide. Here, we want to calculate the inductance of



the isolated bar which we have simulated in the previous lecture using 2D FE code. So we will

calculate the inductance and verify it with an analytical formula.

We know that energy is calculated by using ft V1 dt. Now you replace I in this integral with %l and

V with N % and ¢ = BS where S is the area. If you substitute all these three terms in the above

integral, the expression of energy is simplified as given below.

dB\ (HI :
jvrdz:fsw(—)(—)drz fHdB st ifv =51
dt N

t t B

Here, Sl is the incremental volume and then if you evaluate fB HdB by substituting H = %, the

. B? .
expression of energy reduces to Y as given below.

f HdB = f —dB |v = —2 = —2 = —1 HB
v P 0 v > v > v
B B

Consider a magnetic material divided into small elements and the volume of each element is v. In

each of these elements, you calculate B by using the following expression which is in terms of A.

1

Be Z_
(B%) A2

{(A1Q, + A5Q,+A5Q3)° + (ATP, + ASP,+ASP;)%}
Remember that we calculate B using A and it is constant because we considered the first order
approximation of A as a + bx + cy which varies linearly with x and y.

The derivative of A with respect to x and y are constant and therefore B in each element will be

2
constant. So over each element f—#v is also constant. If it is a 2D formulation, thenv =Sl =S x 1

2
which means 1 m depth in z direction. So the energy associated with each element is S—MS. Then to



calculate the energy for the entire core you have to add energies of all the elements calculated
. B?

using ZS'

Also, when we were studying basics of electromagnetics we understood that the energy is

represented by the shaded area and co energy is represented by the remaining area of the following

figure.

The physical interpretation of energy and co-energy and usefulness of co energy will be discussed
later, when we see calculation of forces. So till that time, we will be deferring the discussion on

co-energy.
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Inductance of an isolated rectangular bar
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FEM Simulation %) [ = (.22 x 10~° H (boundary too close,0.1m x 0.1m) /
=) [ =0.672x107°H (boundary far,1m x 1m) /
0. R. Schurig, “Engineering calculation of inductance and reactance for rectangular bar conductors,” General Electric Review, vol. 36, pp. Al
228-231,1933
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Going further, using the code discussed in the previous lecture, we have simulated and got the field
solution for the rectangular bar which was enclosed in another rectangle. The geometry and

dimensions of the bar are given in the following figure.



40 mm

b

a=40mm

Then using the FEM solution, we can calculate the inductance of the bar conductor. First we will
see the following analytical formula to calculate the inductance of an isolated rectangular
conductor.

2L,
L =0.002L, {m (D—) —1+

N

Dy

x 107
o)

Here L, is the length of the bar (in cm) along the direction of current. Here it is z direction. In 2D
analysis, we are assuming 1 meter length in z direction. So we are calculating the inductance per

meter depth.

Dy in the above equation is represented using the empirical formula Dg = 0.2235(a + b) where
a and b are the dimensions of the rectangular conductor. So if you substitute all the dimensions in
centimeters in the above expression of inductance, we will get the value of L as 0.747 x 1076 H.
Now we can verify the finite element solution with the value calculated using the analytical

expression.

We already have got the FE solution and we can calculate the B values in each of the elements

using the formulation discussed in the previous slides. We can calculate the energy of each element

2
using f—#S and that will be the elemental energy. We add energies of all elements and then equate

itto %LIZ, where | is the current flowing through the conductor.

In the previous lecture, we have specified current in our FEM simulation in terms of J and we have

to take that current and the expression %le is equated to the energy obtained from the FEM

2
simulation. Each elemental energy is f—#v. When you do that then the FEM simulation gives

0.22 X 107 H when we take the boundary dimensions as 0.1 x 0.1 which are closer to the



rectangular conductor. In the previous lecture, we had mentioned that the boundary which is too
close will give an inaccurate result and it is evident here that the inductance calculated using the

FE simulation is quite far from the one calculated using the analytical formula.

The FE solution for the configuration that we saw in the previous lecture is quite approximate
because the boundary is very close to the conductor and the analytical formula is for an isolated
bar. In that lecture, we had taken the boundary as too close to understand FEM coding for a simple

geometry with few number of elements.

Later on, we developed a code. Using that code, if we take the boundary far from the conductor
say, 1 m x 1 m, which is a much bigger boundary then you will get that value of L as
0.672 x 107°H which is closer to the one calculated using the analytical formula. Remember this
value of inductance will be more correct than the one calculated using the analytical formula.
Because there are some empirical factors in the analytical formula, which depend upon the

dimensions, so the accuracy will vary.
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‘calculation of magnetic field quantities
for element=1:n_elements

nodes=t(2:4,element); r3
Xc=p(1,nodes); 4
Yc=p(2,nodes’); % eer /
P=zeros(3.1); EE 7::'12{""‘57;5 !
Q=zeros(3,1);
P1)=Ye2):Ye3)  P=y,-y
P(2)=Yc(3)-Ye(1), @ P, = y, - )’l Q
PER)=Ye(1)-Yef2);  Py=y, - Q
QU)=Xc@)Xc); @, =x,- _rl ,
Q(2)=Xc(1)-Xe(3); e 0, = x, - xy
Q)=Xc@Xel1); 0y =x,-x, ;
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Now, how do we calculate the same thing using a code. We have already got the nodal potential
(A) values using the code in the previous lecture. Then we run the code, the for loop, given in the
above slide for each element. Global nodes of each element are taken by using the command

nodes=t(2:4,element) and you are familiar about this.



By this command, second, third and fourth entries of each column from the t matrix which are the
global node numbers of each element will come into the ‘nodes’ matrix for that element. Then the
two commands Xc=p(1,nodes’); Yc=p(2,nodes’) will save the x and y coordinates of those global

nodes in the Xc and Yc matrices whose dimensions are 3 x 1.

Now we will assign P;, P,, and P; and Q,, Q,, and Q5 and then we calculate the values of these

variables using the following code that we have already seen.

P(1)=Yc(2)-Ye(3);,  Pi=y,—vs
P(2)=Ye(3)-Yc(1); =y P, = y5 — ¥4
PE)=Yc(1)-Ye(2),  Pa=yi -
Q(1)=Xc(3)-Xc(2); @y = x5 — x2
Q(2)=Xc(1)-Xc(3); I @, = x; — x5
Q(3)=Xc(2)-Xc(1); Q3 = x; —x,
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’.’/\l:lll [~ =@l [:]e 0 ] JU (L (VI «@ v

Une [ Sckgroonds (0 Pages Prevon et (e Wb Documents. Shaw Desktop Openboard

delta(element)= 0.5"abs((P(2)*Q(3))-(P(3)'Q(2)));

By(element)=- By = - gp (AiPi + AGP, + AxP()‘
(((A(nodes(1),1))*P(1))+((A(nodes(2),1))*P(2))+((A(nodes(3),1))*P(3)))/
2'delta(element)); T
Bx(element)=(((A(nodes(1),1))"Q(1))+((A(nodes(2),1))*Q(2))+((A(NOTES ¢ 1y iar mune
(3),1))Q(3)))/(2"delta(element)); : ‘B;’ : %(AYO; T
Bnet(element)=sqrt((Bx(element)*2)+ (By(element)"2));

~ NS N

Hx(element)=Bx(element)/Mu(element);
Hy(element)=By(element)/Mu(element);
H(element)=Bnet(element)/Mu(element);
end
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Then we saw the following expressions of B, and B,
_ 1
B® = ﬁ{("ﬁQl + ASQ; + A3Q5)a, — (AP, + ASP, + A3P5)d,}

A is the area of the element and we have seen its expression in the previous lecture. Then you

calculate B, and B,, using the following commands.



By(element)= -
(((A(nodes(1),1))*P(1))+((A(nodes(2),1))*P(2))+((A(nodes(3),1))*P(3)))/(2*delta(element));

ta(element));
Then B, = /B + B; and H,. and H,, and H,,. are calculated by using the following commands.

Bnet(element)=sqrt((Bx(element)*2)+(By(element)"2));

So by this, we have got B and H values.

(Refer Slide Time: 13:12)
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| = (0.04'0.04)*1€3; // Converting applied current density into current aa £
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Now we calculate the energy using the expression g—u delta X 1. ZB—M will be the energy density and
multiplying it with the area of the element will give energy per meter depth. delta x 1 will be the
2
volume. So, by multiplying f—” with delta x 1 will give the energy of the element. The sum

function in the following command adds energies of all elements in the domain and the total energy

IS equated to %LI2 to calculate L.



// Calculation of inductance from stored energy

I in the expression is calculated by multiplying the current density that is imposed in the FE
simulation with cross sectional area of the conductor (0.4 m x 0.4 m) and it is calculated by using

the following command.
| = (0.04*0.04)*1e3; // Converting applied current density into current

The above command gives you current and then L is calculated by using the following command.

This commands gives the value of L in uH because we have multiplied the expression with 10°.

In the command to calculate the energy, you can see that there is a .* command. If you have two
column vectors and if you want corresponding entries of the two column vectors to be multiplied

then you have to use .* between the two vectors as shown in the following equations.

B[] B[
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L: Laplacian operator (=V°), @ is unknown potential function et s g

s h: forcing (source) function (known)

Whole domain approximation@ = C, + C,0, (x) + C,0,(x) + - + ,0,(x)
Residue: R = LO - h

Residue (error) is minimized in weighted integral sense

jWRdQ =0 /

Different weighted residual techniques are available
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Till now we have seen variational formulation and the corresponding FE procedures. In one of the
first lectures, | mentioned that there are two distinct approaches; one is the variational approach
and other is the weighted residual method. The variational approach is based on physical
principles because we are minimizing energy to determine the solution whereas weighted residual

approach is more mathematical and it is based on error minimization.

Now we will quickly see details about the method of weighted residuals and we will also see the
equivalence between the two approaches (variational and weighted residual approaches) and we
will prove that both approaches lead to the same final system of matrix equations. Sometimes the
weighted residual approach is more preferred because it is a generalized method whereas in the

variational approach you need to find a functional for a given PDE.

For standard PDEs, you know functional expressions. But if you have a non-standard PDE then
you have to first find the corresponding functional to determine the final matrix equations and
solution. Instead of that in weighted residual approach, there is no need to to find a functional.
Now let us start with a partial differential equation which is given by the equation L¢p = h where

L in this case is a Laplacian operator —V? for the case of a Poisson’s equation.

Here, ¢ is the unknown potential function and h is the forcing or source function which is known.
Now again we start with a whole domain approximation and we approximate the unknown

functionas @ = Co + C; 0, (x) + C,0,(x) + -+ C, 0, (x).

By substituting the approximate function (6) we get residue as R = L@ — h. This residue or error

is minimized in the weighted integral sense which is given by the following equation.
j WRAQ =0

Now dQ in the above equation stands for the area and we could also call this as dS. In the earlier

lectures, we have been using dS. Three different residual approaches are available.
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Number of collocation (matching) points in the domain eemnsu o
(and corresponding W, for each of them) = number of unknowns
Higher the number of points = higher the accuracy
Consider 0" +0+x =0, with 0(0)=0(1) =0 A
Let us have second order approximation: o:
0=Co+Cxt Cxd, 0(0)=05C, =0, 0(1)=0=C, = -C, P
20 = C(x(1 - x)) &
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The first method is collocation method, in which we use Dirac-delta function as the weighting

function (W). It is defined as given in the following equation.

1if x=x
0if x # x;

Wi(x) = 8(x — x,) ={

In signal and systems, this is very popularly used. Basically this function is used to focus on a
particular point in the domain and to apply an equation at that point only and at rest of the points
you make the function as 0. The number of collocation or matching points in the domain should
be equal to the number of unknowns. Because our objective is to find the number of equations
which should be equal to the number of unknowns. Higher number of points or collocation points

then higher will be the accuracy.
Now consider the following differential equation that we have been seeing for quite sometime.
" +0+x=0, with @0)=0(1)=0

Let us consider a second order approximation for the unknown potential as @ = C, + C;x + C,x?
and if you apply the boundary conditions @(0) = @(1) = 0, then C, = 0, and C; = —C,,s0 @ =
C(x(1—x)).
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£(sv e s |[-[-[a] ] o SO L @ I
R=0"48+x=-20+C(x(1-x))+x @

One unknown = one collocation or matching point aa .

. 1 m 4

Letus choose itas x = > ¥

11T Bombay N

R 1 05 =20 +C 1 +1 0 c 2 EE 725021 Siide 10

=-l=U=2- - -= = ==
2 4) 2 7

’ o Q

“P= 5,\(1 - A) Q

/

Electrical Equipment and Machines: Finite Element Analysis
(NPTEL - MOOC course)
) Prot. S. V. Kulkarni, EE Dept., IIT Bombay @

Now residue is given by R = @” + @ + x. If you substitute the expression of the approximate
potential @ = C(x(1—x))in the residual, then you will get the residual as R = —2C +
C(x(l - x)) + x which is the residue at each point because it depends upon the value of x. So the

value of residue will vary in the one dimensional domain. Now in the approximate function you

have only one unknown (C), so only one matching point is required.

The Dirac delta function (6(x - xi)) is operated only at that one matching point that you have
chosen. Here, the selected matching point is 0.5 which is the midpoint of the whole domain, if we
are choosing only one point.

So when you execute [ WRAQ = 0 with W = §(x — 0.5) and if you substitute it in the above

integral then you will get R(0.5) = 0.5. Now if you substitute x = 0.5 in the residual expression

then it will lead to € = 2/7. So we will get the solution as @ = %x(l —X).
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Now let us consider approximation @ = C, + C;x + C,x? + C3x® with 4 coefficients C, to Cs.

Then after applying boundary conditions which we have seen earlier the approximate solution
reduces to @ = C,(x(x — 1)) + C3(x(x? — 1)). Then @" = 2C, + 6C5x. The residue for this

approximation is given below.
R=Cy(x* —x+2)+ C3(x3+5x) +x

The above equation which is a function of x is the residue at every point . Now in this residual

expression, there are two unknowns C, and C5. So, we have to choose two matching points to get

two equations. Now let us choose two matching points x = %and X = gwhich are equidistant.
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When you execute [ WRdAQ = 0 for Dirac-delta function operating at x = § and x = % you will

get the two equations with two unknowns given in the above slide. If you solve these two
equations, you will get ¢, = —0.02163, C3; = —0.17307. But this method is not amenable for
2D and 3D problems, because how many matching points that you should choose and their
positions will be a matter of judgement. For 1D, it is straightforward that is why you logically

chose equidistant points. But for a 2D or even more complicated problems, it will be very difficult.
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Before going further, we will see the corresponding errors and compare the errors in the solutions
determined using the two approaches that we have seen till now. This slide shows the exact
solution which we have been seeing and it is represented by the blue colour line. The black dashed
line is the variational method with third order approximation and red line is the collocation
method. From this comparison in the above slide, one can say that the results are quite close in

both cases.

(Refer Slide Time: 23:40)
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Now we will see the residual of the solution determined using the weighted residual method as
shown in the figure on the left hand side. This solution is determined by using x = 0.3333 and
x = 0.6666 as matching points. At these two points, the residue is coming equal to 0. But at other
points, residue is not equal to 0 because we are not forcing the residue to be 0 at the other points.
Residue at these two points being 0 does not mean that we will get the minimum error in potential

at those two points.

The figure on the right hand side represents the variation of error in potential with x. Although you
are getting lower values of errors in potential values but they are not equal to 0. So in this method
what we are ensuring is the residues at the matching points are 0 but we are not ensuring that the

error in potential is 0. We will stop at this point and continue our discussion in the next lecture.



(Refer Slide Time: 24:42)

! L21: Review Questions

1. Solve the following integral f (5 (,[ g g) isin x) dr

2. Using the of expression for B derived in this lecture, prove that

. . . EE725L _ /Slide
Gauss's law for magnetism is satisfied e
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