Electrical Equipment and Machines: Finite Element Analysis
Professor Shrikrishna V Kulkarni

Department of Electrical Engineering

Indian Institute of Technology Bombay

2D FEM Scilab Code: Manual Meshing

Lecture 19

Welcome to the 19" lecture. In the previous lecture, we saw FE procedure to solve 2D
magnetostatic problems. Now we will see the coding aspects and manual meshing. We already
saw a 1D code, so we are not going into line by line details of this code and only part of the

code will be explained in detail.
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cle;
clear; @ /
n=51; // number of nodes along x-axis : y
m=51; // number of nodes along y-axis et /
n_nodes=(n*m); // total number of nodes in the domain ‘
disp('initializing global coefficient matrix'); COEEP \
ol 88 ) IIT Bombay

C=zeros(n_nodes,n_nodes);
BJ=zeros(n_nodes,1);

x=0:0.1/(n-1):0.1; // nodal points on x-axis
y=0:0.1/(m-1):0.1; // nodal points on y- axis
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Here, the same geometry of a rectangular conductor enclosed in a boundary which is in the
above slide is used in this code. This geometry is discretized into a 51 x 51 grid effectively.
So the number of nodes along x and y axes are 51 and 51, and the total number of nodes in the
grid will be 51 x 51 = 2601. Then we are initialising global coefficient matrices as given

below.

C=zeros(n_nodes,n_nodes);

Bl=zeros(n_nodes,1);

All the entries of coefficient matrix (C) and source matrix (B) are made equal to 0. Then,

coordinates of points on the x and y axes are calculated by using

x=0:0.1/(n-1):0.1; // nodal points on x-axis
y=0:0.1/(m-1):0.1; // nodal points on y- axis
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disp('forming p matrix');

// formation of p matrix
// Given domain is discretized into squares and then each square is @ £
// divided into 2 triangular elements using diagonals of square -
g
h=1; // h indicates node number (column index of p matrix) CDEEP z
// Indexing of node numbers and assigning coordinates for p matrix IIT Bombay
for i=1:m // index for y eEnsL 19 /sidel
for j=1:n // index for x (0,0.1)2561  ereee (0.1,0.1)2601
// for eachy, 51 x coordinates are formed E A
p(l,h)=x(|), ; i [ B 7‘; . Conductor region C\
pl2. )=yl uaf /
h=h+1; /
end (0,0.002) :
end 12 3 52 53 2601 " sofpd {102(0.1,0.002) Al
_ [0 0002 0.004 0 000201 W}) 2 A 51(0.1,0) -
0 0 0 0.002 0.002 - 0.1 0 o'ui,u; -
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After you have formed the grid on x-axis with nodes 1 to 51, then the nodes 52 to 102 and so
on up to 2551 to 2601 are formed. The node numbers of the grid are shown in the figure in the
above slide. Using the code in this slide we are forming the p matrix of the geometry. In an FE
code, problem geometry is defined by using 3 matrices p, e and t. p matrix has information
about coordinates of the nodes in the discretized domain. Now the problem domain for this
geometry is discretized into squares (shown in the figure) and each square is divided into 2
triangular elements as shown in the following figure with one lower triangular element and one

upper triangular element.

2601

52—23[54 102
1 2 3 +eeeeees 5051

Then we are filling the p matrix whose entries are given below using the x and y coordinates

of each node.



1 2 3 w 52 53 .. 2601
0 0.002 0.004¢ .. 0 0.002 -- [l.lJ

P=lo o 0 .. 0002 0.002 - 0.1
Using this code, we are populating the p matrix and you will get like the one shown in the
above matrix. In this domain, the total number of nodes will be 2601 (= 51 x 51) so you will
get the size of p matrix as 2 X 2601. The x and y coordinates of each of the nodes are saved in
the p matrix. For example, for node number 1 (first column of p matrix) (x, y) is (0, 0), node

number 2 (second column of p matrix) is (0.002, 0) and so on.

Remember in this lecture, we are doing manual meshing. In the next lecture, we will use gmsh
which is a freeware meshing software and bookkeeping of element numbers and node numbers
can be avoided by using this software. Here we are discussing manual meshing because your
coding fundamentals will get consolidated in this lecture. Then we can go to gmsh when we
start looking at complex problems. Also, we are not going into coding for each of those
problems. By that time, we would have explained you at least 2 or 3 codes using which you
can develop codes for other problems using such logics.

(Refer Slide time: 04:37)
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1], [ —————— );
disp('forming t matrix'); @ /
// formation of t matrix: sub-domain number >
// and 3 global node numbers for each element [y
h=1;// here, h indicates element number (column index of t matrix) 4
// forming t matrix of lower triangular elements e IITCBD:;:»: \
fori=1:m-1 |23 ‘ Yn
for j=1:n-1 t=| - EET25L 1T/ Side )2501
t(1,h)=1; // same material everywhere - \ Q
2 h)=j4((i-1)*n); 2 98 9 @ Q
//fori=1,j=1,h=1,n=51,t21)=1 y,
t(3,h)=j#14((i-1)*n);// t(3,1) = 2 »
t(d,h)=j+1+((i)*n);// (4,1) = 53 /
h=h+1; // incrementing the element number A
ahd 52—pafed 102 <
end 12 3 eeenen 50 51 -
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Next, we will discuss about the t matrix. Now, this t matrix has information of subdomain
numbers and global node numbers of each element. So, the size of this t matrix will be 4 x
number of elements. The number 4 indicates the number of rows and each column represents
an element, for example, column 1 denotes element 1 and the first entry (first row) of any
column is the sub domain number and the 3 global node numbers of that element are in rows

2-4. The t matrix for the problem domain in this example is given below.



101 1

1 2 3
=l 3 4

53 54 55 ... |

The code in the above slide will form the lower triangular elements first. Here, we will first
take all the lower triangular elements for the bottom-most layer (first layer) of elements then
we go to the second row, again we form t matrix for lower triangular elements. Like this, we
finish all the lower triangular elements and then we form the entries for t matrix of the upper
triangular elements. So, using this code you can span the local triangular elements in the whole
geometry. Here we are taking the same material everywhere. Actually, you have 2 materials
in this problem geometry, one is the copper conductor and surrounding the conductor you have

air. But both copper and air are non-magnetic with u, = 1.

That is why we are defining all the elements with the same sub domain number. But actually,
you could have named the conductor as sub-domain number 1 and air as sub-domain number
2. This will help to derive some physical quantity exclusively for the conductor using the code.
For example, if you can calculate the energy associated with the conductor which is material
number 1 or material number 2, then in that case you can define the 2 regions with different
sub-domain numbers. But since we are using manual mesh and we already know the
coordinates of each region and where it is lying, we do not have to differentiate the two regions
separately by using 2 numbers. But in commercial software, for different materials although
their properties maybe same, they are numbered by using different subdomain numbers. We
could have done the same thing here also, but to reduce the coding effort we have named the
subdomain numbers of all the elements by 1 only because the material property (i, = 1) is
same for both air as well as copper regions. Practically you have seen copper is diamagnetic

material with u, slightly less than 1 but for engineering purposes, i, = 1 for copper.

When you execute the subroutine explained in the above slide if h = 1 then the index is 1 and
the following 3 commands will result into 1 2 and 53 and they are the global node numbers for
the first element. Next time when you again run this loop with h = 2 then you will get 2 3 53
as the 3 node numbers. So, this way, you would have formed the t matrix entries corresponding

to all the lower triangular elements in the whole domain.
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for i=1:m-1//(similarly, for upper triangular elements, 1** number: 2501)

forj=1:n-1 7
HLh)=1; @ i
t(2,h)=j+((i-1)*n); i ,
Jfori=1,j=1,h=1,n=51, (2.1) = 1 :
t(3,h)=j+1+((i)*n);// t(3,1) = 53 2601 "TC;EE:
t{a,h)=j+{()*n)// 114, 1) = 52 — “4
heh+1; 125011 /ide

end =) Q

end i e ] ) e b
: | 1 2 .

Tl s /

53 .5 53 52 54 01' .

123
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Similarly, we can form the t matrix entries for upper triangular elements which are given below.

1 .01 1
1 .01 2
=2 . 53 54..
53 .. 52 53 ..

We already got the columns of t matrix entries before the column with entries 1 1 53 52, which
are the entries for the lower triangular elements when you execute the similar code (in the
above slide) with little bit different commands than the earlier one. When you run the
subroutine for the first time you will get 1 1 53 and 52 as its output. Similarly, when you execute
it next time you will get 1 2 54 53 and likewise you can form entries for the other elements

also. So then at the end these 2 subroutines you would have got all the entries of the t matrix.
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(A3 n_elements]=size(t);// A3=4, n_elements=no. of columns of t (i.e., no
of elements)

//size of t matrix is 4 X no. of elements and 4 gets assigned to A3

(A1 n_nodes]=size(p);// A1=2, n_nodes=no. of columns of p (i.e., no. of
nodes)

//size of p matrix is 2 X no. of nodes and 2 gets assigned to A1
disp('number of elements');

disp(n_elements); //for n = 51, m = 51, n_elements = 5000

disp('number of nodes');

disp(n_nodes); //for n =51, m = 51, n_nodes = 2601

\
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disp('forming t matrix'); @ Y
// formation of t matrix: sub-domain number <
// and 3 global node numbers for each element i
h=1;// here, h indicates element number (column index of t matrix)
// forming t matrix of lower triangular elements o IITCBD:;:a '
fori=1:m-1 |23 . yz
forJ:I:n~1 L= Ty EET25L 19/ Side S
t(1,h)=1; // same material everywhere \ Q
t(Z,h):p((l-l)‘n); 53 5455 . q
//fori=1,j=1,h=1,n:51,(2,1)=1 ,
t3, )=+ 1+((i-1)*n)// t(3,1) = 2 ="
{4 h)=j+14((i)*n);// 14,1) = 53 /
h=h+1; // incrementing the element number A
¢hd 52354 102 e
end 123 e 50 51 =
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We will go further. Now this command [A3 n_elements]=size(t) will give the size or
dimensions of t matrix. The size of t matrix 4 x number of elements as | explained will get
assigned to A3 and number of elements which is equal to the number of columns of t matrix
will get assigned to the variable n_elements by this command. Similarly, the command [Al
n_nodes]=size(p) will assign 2 to Al because the size of the p matrix is 2x number of nodes.
And the number of nodes will get assigned to n_nodes . And that is why and when you display

those variables on the console, number of elements will be displayed as 5000 and number of

nodes as 2601.
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//Forming element coefficient matrices
53

disp('forming element coefficient matrix'); A : 7
for element:lzn_ele‘merV'l 2 For element 1, nodes = (12 53] @ ¥

nodes=t(2:4,element); P

//2", 3" and 4" rows --> 3 global node numbers of each element /
//'nodes’is a 3 X 1 matrix containing global - COEEP r
// node numbers of the element under consideration IIT Bombay

Xc=p(1,nodes'); //x-coordinates of nodes, Xc is a 8.X 1 matrix
Yc=p(2,nodes’); //y-coordinates of nodes, Yc is a 3 X 1 matrix

L34 S RETN

S G e &
Now we will see how element coefficient matrices are formed. When we run the for loop from
1 to number of elements and then we take in nodes. The three global nodes of each element get
assigned to nodes matrix using the command nodes=t(2:4,element) because 2 3 4 rows of a
column of the t matrix are the global node numbers of the element and the first row is the sub-
domain number. By executing this command, we would get global node numbers of each
element, for element number 1, entries of the nodes matrix are 1 2 and 53 which are the global

node numbers.

Having got the global nodes of an element, we need to get x and y coordinates of those nodes.
The x and y coordinates are stored in p matrix because it has information about the coordinates.
By executing the 2 commands Xc=p(1,nodes") and Yc=p(2,nodes") the corresponding x and y
coordinates of these 3 nodes can be obtained. Again, Xc and Yc will be 3 X 1 matrices
corresponding to x and y coordinates of the 3 global node numbers of the corresponding
element under consideration. So, for each element we will get this information which will be

helpful to form element coefficient matrices which will see later.
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P=zeros(3,1); |
Q=zeros(3,1); N=— (%33 =x)) + 3y = v)x+(x -5y 7
P(1)=Yc(2)-Yc(3); 2 S5 o @ y
P(2)=Yc(3)-Yc(1); ‘ sy
RO ), ) oy i
Q(1)=Xc(3)Xc(2); N, = 0 (v =y )+ (v =w )x+ (= x )y COEEP \
Q(2)=Xc(1)Xc(3); = ey IIT Bombay
Q(3)=Xc(2)-Xc(1); een2sL 19 /5o 7
N‘_’L\(H\"_"‘\')+""_L)H(Lﬂ‘] ;:
Py (LR
y
i/
Al
Ref: M. N. O. Sadiku and S. V. Kulkarni, Principles of Electromagnetics, Sixth Edition, Oxford University Press, India, 2015
(Asian adaptation of ‘M. N. O. Sadiku, Elements of Electromagnetics, Sixth International Edition, Oxford University Press') -
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We have seen the expressions that are coded in the above slide earlier and shape functions N1,
N2 and N3 are given by the three equations in the above slide. Now we call y, — y; as P;,
X, — X3 as Q; and similarly the other 2 sets of expressions as indicated in the slide. Then we
will code the expressions of P; to Q5 as given in the above slide to simplify our equations of
the entries of local coefficient matrices. As | said earlier, these expressions would be required

quite often when we develop an FE code.

(Refer Slide time: 13:23)
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//finding x and y coordinates of the centroid

//see if the element lies within the rectangular conductor v
X = sum(Xc)/3; % '
cY = sum(Yc)/3; - v
if (cX<=0.07 && X>=0.03) && (¢Y<=0.07 && c¥>=0.03) then
Mu(element) = 4*%pi*1e-7; (0.1,0.1) CDEEP \
bj = 1e3; // J--> current (amp-turn) density IIT Bombay
else st | /sice §
Mu(element) = 4*%pi*1e-7; (0.02,0.07) Q
bj=0; 1 Q
end 7 y,
(0.62,0.03) L/
Al

(0,0) - -

Conductor dimensions 0.04 x 0.04
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Now in our geometry we have a rectangular conductor and an air box as shown in the figure of
the above slide. As far as the material properties are concerned both air and copper are non-

magnetic u,- = 1 but what is the main difference between the 2 regions. There is current in the



conductor region and we have to impose it for this region. So, we have to find all the elements
which lie within this conductor so that we can assign current density and the corresponding b

matrix for those elements can be derived.

The x and y coordinates of the centroid of an element is calculated by using the following
commands.

cX = sum(Xc)/3;
cY = sum(Yc)/3;

Then we know that for this conductor, the coordinate of the leftmost point and the rightmost
point, that is top most point on the right-hand side and bottom most point on the left side are
(0.07, 0.07) and (0.03, 0.03) respectively, which are indicated in the figure on the above slide.
Remember we had the whole geometry from 0 to 100 mm whereas the conductor was from 30
to 70 mm in x and y directions. So in this code we are checking whether the x and y coordinates
of the centroid of the element lie between 0.03 and 0.07 and if it is true, then that element is

within the conductor rectangular area.

For example, let us say we have an element like the one which is indicated in the above figure.
Now, we are calculating the centroid of that element which is at the centre of the triangle. If
that centroid lies within the conductor region, then the triangle is lying within the conductor.
And if that being the case then we assign u = u,u, = 4m X 10”7 because u, = 1 and then

b; = 103. This we are taking as an example and we are considering current density in the

conductor as 103A/m?.

It should be noted that it can be current density or ampere turn density in case of a winding.
Now the present case is like a single conductor which is like a 1 turn winding. So you have to
feed current as ampere turn density. When you solve a transformer or a rotating machine
example, there we will define ampere turn density in the current carrying areas. And it is equal
to ampere turns divided by the corresponding cross-sectional area of the winding. So current
density is fed in the conductor region and if the element is outside the conductor area then

again, u, = 1 but b; = 0 because there is no current carrying part in the air region.
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// area of triangular elements

delta= 0.5*abs((P(2)*Q(3))-(P(3)*Q(2)));

//Absolute value is taken since o o
the th d t have b bered in the anticlock direct

//the three nodes may not have been numbered in the anticlockwise direction ﬁm

ﬂ CDEEP *
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We have already seen the expression of the command delta= 0.5*abs((P(2)*Q(3))-(P(3)*Q(2))) in
the above slide which calculates the area of the triangle. This expression can be verified by
using the derivations in the above slide. We have already got the expressions for P;s and Q;s.
Also, absolute value is taken, because, in case, if the nodes are not numbered in the anti-
clockwise direction then area will be negative. We have explained the expressions in the above
slide earlier in one of the previous slides. We verified this expression for the area of a triangle

in terms of the determinant and coefficients P;s and Q;s.

(Refer Slide time: 17: 37)
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fori=1:3
for j=1:3 // 3 X 3 element coefficient matrix

7
c(Element,i,j)=((P(i)*P()))+(Q(i)*Q(j)))/(4* delta* Mu(element)); :
end -
end // 3 X 1 element level source matrix 4
be(element,:) = bj*(delta/3)*(1;1;1); COEEP \
end IIT Bombay
€een2sL 17 /5ie 10
. ] Q
c,,:FLVN‘»VN,dS = e P 0 N
B = b1 =J a1 i
|l .
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Now, we form element coefficient matrices. The entries of the element coefficient matrix can

be formed by the following command.



c(element,i,j)=((P()*P(j))+(Q(1)*Q())))/ (4*delta*Mu(element));

It is so simple in terms of coding effort. Also, it is very straightforward. We have seen the

Remember that this command is being run in the for loop for each element. Suppose for element
number 1, we will get the corresponding 3x3 matrix. These matrices for all the elements are
stored in a single variable as stacks. Mr. Sairam has explained about this thing earlier.

3x3 matrices of elements 1, 2, 3, and so on are stacks and that would get formed when you run
the for loop for each element. For example, for the first element, i and j goes from 1 to 3 and
the corresponding 3x3 element coefficient matrix is formed. The corresponding source
contribution to that element will be given by the command be(element,:) = bj*(delta/3)*[1;1;1]

which is given by the following expression. ;

bt 11
Be = |b¢ :Ja§ 1
be 1

If the current density exists in that element, it basically gets apportioned to each of the nodes

A
of that triangular element equally as ]? That is what is being coded in the above slide.

(Refer Slide time: 19:44)
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disp(‘forming global coefficient matrix');
for element=1:n_elements

nodes=t(2:4,element); 74
// Formation of the global coefficient matrix ,
fori=1:3 v
forj=1:3 ¢
odes(i),nodes(j))=C(nodes(i),nodes(j)) +c(element,i,)); COEEP \
end IIT Bombay
n s | nt,i)+ 3 2
BJ(nodes(i),1) = be(element,i)+ B)(nodes(i),1); j \"w P
end «l» TJ\ Element 1 4 Element 2501 "V
Element 1 ¥ Element 2501 ”
end o 1“2 ” i nodes = (1253)7 nodes « (153 52)7 n S
Rl !,“]V o fori = 1 v (0T S o Q
e BI(1) =B)(1)+be(1,1) | BI(1) =B)(1)+be(2501,1
€(1,1) *COL1)ac(1, 1,1 (o] ' - ' y,
0 | 70
0 [
1) 2 L) fnied forle3 /
LY eI 1.83) aC(1.8315c(250L1 B)(2) =B)(2)+be(1,2) | BI(S3) =B)(53)+be(2501,2)
- L) e b 4 Al
0 40 0 /0
foriwi,)=3 or 1% 2,) 3 forisd fori=3 (@]
€115 *C(1SY +el1,1,3) ¢(53,52) oC(53.82)0e(a501,2,3| B3 *BUS3)+be(1.3)] B)(52) «B(52)+be(2501.3)
o o Y 0 =
1 0 =0
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QISP {{ssessssasssissssssasiussssisiissomsinsssinsinisaisinsdissistis );
disp('forming t matrix'); @ /
// formation of t matrix: sub-domain number S
// and 3 global node numbers for each element [
h=1;// here, h indicates element number (column index of t matrix) 4
// forming t matrix of lower triangular elements e IITCBD:;:a \
fori=1:m-1 |23 ‘ Yﬂ
forlzl;n.l I = Ty EET25L 19/ Siide )2601
t(1,h)=1; // same material everywhere \ Q
t2,0)=+((i-1)*); SRR Q
//foriz=1,j=1,h=1,n=51,t21)=1 y
t(3,h)=j+14((i-1)*n);// 1(3,1) = 2 »
4, b 1+(() )/ 1,1) = 53 /
h=h+1; // incrementing the element number A
end 52334 102 <
end 1 2.3 ceveern 50 51 -
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Going further, like we saw in case of the 1D FE code, we will see how to get the global
coefficient matrix by combining all element coefficient matrices. Again, we will run a for loop
from 1 to the number of elements. For each element, we take element coefficient matrices and
go on appending them to the global coefficient matrix. Each element will have 3 nodes and
some of the nodes and edges of each element may be common to different elements. By
execution of the command nodes=t(2:4,element) for each element, we get its global node

numbers using the t matrix into the 3x1 column matrix named as nodes.

Then we run the following for loops in which i goes from 1 to 3, and j goes from 1 to 3.

fori=1:3
forj=1:3
C{nodes(i),nodes(j})=C{nodes(i},nodes(j))+c(element,i,j);
end
Bl(nodes(i),1) = be(element,i}+ Bl(nodes(i},1);
end
These for loops will read the 9 entries from the element coefficient matrix. Depending upon
the corresponding global node number, each of those 9 entries will get appended to the
corresponding entries of the global coefficient matrix because nodes(i), nodes(j) will return the
global number from the nodes matrix. For example, element 1 is a lower triangular element
with global nodes 1, 2, and 53. When we run these two for loops with i =1 and j =1, ¢(1,1,1)
gets appended to C(1,1) as given in the following figure. Because the local node number 1 of

element 1 is global node number 1.



53

Element 1 - ﬂ
1 2

nodes = [1 2 53]7

fori=1,j=1 ele‘ment
C(1,1) =C(1,1)+¢{1,1,1)
—_ X

=0 1]

So that is how the contribution of node 1 in element 1 will get added to global coefficient
matriX. You can see here that the initial value of C(1,1) is O because for the first time we are
appending something to the C(1,1) position of global coefficient matrix. So C(1,1) will get
filled with ¢(1,1,1) ((1,1) entry of the element coefficient matrix of element 1).

Similarly, for element 1, wheni=1andj =2, c(1,1,2) of element 1 will get appended to C(1,2)

as shown in the figure below. Because again the global node number of this local node 2 is 2.

fori=1, =2
C(1,2) =C(1,2)4c(1,1,2)
0

When i = 1 and j = 3 for the first element, the global node number of local node 3 for the
element 1 is 53. So ¢(1,1,3) of element 1 will be appended to C(1,53). The (1,3) position of
local coefficient matrix of element 1 will correspond to (1,53) position of global coefficient
matrix. So C(1,53) will get the value of ¢(1,1,3) of element 1.

Now you go to element number 2501 which is the first upper triangular element that comes
after going through all lower triangular elements. And the global node numbers for this element
are 1, 53, and 52. Now fori=1and j =1, C(1,1) # 0 because this node number was already

encountered for element 1. We will append ¢(2501,1,1) to €(1,1) as shown below.

52[;§3
Element 2501 -
1

nodes = [1 53 52]T

fori=1,j=1 =eqent
C(1,1) =C(1,1)+¢(2501,1,1)
i—.v_nl T
#0 .

Now, the global node number 1 is common to element 1 (lower triangular element) and element
2501 (upper triangular element). So that is why c¢(1,1,1) and ¢(2501,1,1) will be added in the
formation of the global coefficient matrix. That is why C(1,1) will be contributed by (1,1) of

element number 1 and (1,1) of element 2501. The global node number 53 will be common to



6 elements because this node is in the inner region of the grid. You can see in the following

figure, the node 53 will be common to 6 triangular elements.

l

1 2 3

Since the global node number 53 is common to 6 elements, the diagonal entry C(53,53) will

get appended 6 times. But this whole thing will be done using the following statement.
c(element,i,j)=((P(1)*P())+(Q(1)*Q()))/(4*delta*Mu(element))

You may feel that it is so complicated, but it is just happening due to the execution of the above
statement. Similarly, now we consider the b matrix (source matrix), which is a 1-dimensional
matrix. For element number 1, be(1,1) of local node number 1 of element 1 will get appended
to the global BJ(1). Initially, it is O and for the first time it will get updated by the contribution

of element 1.

For element 2501, global node number 1 will be encountered for the second time. The
corresponding contribution of that element will get appended to BJ(1). And this goes on and
by the end of this we would have got both global matrices C, BJ. We are calling the source
matrix as BJ and not B. Because this has the contribution of only current source. Another
contribution from boundary conditions will be there and that matrix will be modified when we

impose them. That is why we are calling this matrix as BJ.

(Refer Slide time: 27:35)
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Now, we apply the boundary conditions. For the outermost boundary, we are specifying
magnetic vector potential (A) = 0. For all the nodes which are on the outer boundary of the
domain we have to specify A =0. Although it is a vector potential, here, since it is a 2D analysis,
it is a scalar because its direction is already fixed. A is only in the z direction. Since, the
direction of A is already known, we need to determine only the magnitude of A at every node
in the domain. Because we have converted the problem domain wherein we need to calculate

potential at every point to a problem where potentials are calculated only at the grid points.

Once you calculate the potentials at grid points, then potential at any point within an element
can be determined by using the formula A = a + bx + cy which is our original approximation.
The way we imposed the boundary conditions in the above slide is also explained to you when
we saw the 1D code. The boundary conditions are imposed by making the corresponding

diagonal entry of the node as 1 and off-diagonal entries as 0.

The easiest way to do this is first you make all the entries of the row that corresponds to a
boundary node as 0 and then make the diagonal entry 1, rather than searching which is the
diagonal entry. This way of imposing boundary conditions is straightforward. For the row of
an i boundary node, all entries are made 0 and the diagonal entry C(i,i) is made 1 by the

following commands.

Cl(i,:)=zeros(1,n_nodes);
C{\iz\ijzla'

In the last lecture, we saw an example of imposing As = 0 in 1D code. In that example, we
made the diagonal entry of 5" row as 1 and on the right-hand side, we made the 5" entry of B

as 0. All the diagonal entries are already O there.

The same thing we repeat for the bottom edge by using the first for loop in the above slide
which runs from 1 to 51 because n and m are equal to 51. Then for the second vertical edge we
are running the second for loop in the above slide from 52 to 2500 with a step size of 50 because
1 is already assigned in boundary edge. Since this is manual meshing, you have to do this
bookkeeping of boundary nodes. In the next lecture, we see the use of freeware called gmsh,
there all these things become very easy. We do not have to worry about keeping the track of

boundary node numbers to impose boundary conditions.
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Then the same procedure that we use for this bottom edge is followed for the second vertical
edge and finally for the top edge. Only difference is that the index for i is adjusted so that we
get proper numbers of nodes on the edges when we execute the for loops.

(Refer Slide time: 31:19)
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disp(‘computing nodal potentials');

A-C\BY; @ ;
//Here, A is a column vector - it is converted into n X m matrix, d
//similarly, two rows of p matrix (x and y coordinates) are converted /
//into n X m matrix X
Vn=matrix(A(1:n*m),n,m); IIT Bombay

//potentials at each node of n X m grid eenst 1 isise '

XX=matrix(p(1,1:n*m),n,m),// x coordinates of n X m grid

Q

YY=matr|x(p(2,1:n*m),n,m);// y coordinates of n X m grid Q
y

reshape is the command used in Matlab® to convert 7

a coltﬁn vector into a into n X m matrix
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Now we are nearing the end of this code. Although we are calling the right hand side matrix as
BJ, it got modified with the boundary conditions. Now, this matrix has got the contributions
from both source (J) and boundary conditions. Now, we have the matrix equation of the form
CA = B. We have seen this earlier and then we have to invert C. So A is inv(C)B. Now, in both

Matlab and Scilab, inv(C)B is calculated by using C\B.



Now, we have got the solution (nodal potential values) in the matrix A. By executing the
command (A=C\B) we have got unknown magnetic vector potential values at all points within
the geometry. At the boundary points we will get the potentials that we have already imposed.
Now we have to convert this A which is a column vector into a 2 dimensional matrix because
the problem geometry is 2 dimensional. It is of no use for us to have a column vector for the
plotting purpose because we need to plot it in the 2 dimensional space. So that is why we are
converting this column vector into an nxm matrix. And similarly the two rows of p matrix
which are x, y coordinates of nodes in the problem domain has to be converted into an nxm

matrix. That means at each of the nodes, we have x and y coordinates in p matrix.

So, we have to convert them as 2 dimensional matrices for each of those x and y coordinates

in the 2 dimensional plane. Now, we have to plot the corresponding A values, which are also

in 2 dimensional matrix form. These are accomplished by using the following commands.
Vn=matrix(A(1:n*m),n,m); //potentials at each node of n X m grid

XX=matrix(p(1,1:n*m),n,m);// x coordinates of n X m grid
YY=matrix(p(2,1:n*m),n,m);// v coordinates of n X m grid

A similar command in Matlab is ‘reshape’. Those who are having Matlab commercial software,

they can use the same code with using ‘reshape’ instead of ‘matrix’.
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So, having done that now we need to plot the potential values using the following commands

for surface and contour plots which are shown in the above slide.



surf(XX,YY,Vn’)
contour(x,y,vn,25)

By observing the above plots, you can remember that A = 0 at the boundaries and A will be
higher at the centre of the conductor. So, this is how you can plot the potentials. We will end
this 19" lecture here and then we will see how the same coding can be done using the mesh

generated using gmsh software, which is a freeware. Thank you.

(Refer Slide time: 34:49)

L19: Review Question

Q: In the demonstrated 2D code, subdomain number 1 is specified to %

both conductor and air regions. Modify the code to specify subdomain ¢
number 1 for the air region and subdomain number 2 for the conductor , L
region. IIT Bombay
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