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Welcome to the 19th lecture. In the previous lecture, we saw FE procedure to solve 2D 

magnetostatic problems. Now we will see the coding aspects and manual meshing. We already 

saw a 1D code, so we are not going into line by line details of this code and only part of the 

code will be explained in detail.  
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Here, the same geometry of a rectangular conductor enclosed in a boundary which is in the 

above slide is used in this code. This geometry is discretized into a 51 × 51 grid effectively. 

So the number of nodes along x and y axes are 51 and 51, and the total number of nodes in the 

grid will be 51 × 51 = 2601. Then we are initialising global coefficient matrices as given 

below.  

 

All the entries of coefficient matrix (C) and source matrix (B) are made equal to 0. Then, 

coordinates of points on the x and y axes are calculated by using 
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After you have formed the grid on x-axis with nodes 1 to 51, then the nodes 52 to 102 and so 

on  up to 2551 to 2601 are formed. The node numbers of the grid are shown in the figure in the 

above slide. Using the code in this slide we are forming the p matrix of the geometry. In an FE 

code, problem geometry is defined by using 3 matrices p, e and t. p matrix has information 

about coordinates of the nodes in the discretized domain. Now the problem domain for this 

geometry is discretized into squares (shown in the figure) and each square is divided into 2 

triangular elements as shown in the following figure with one lower triangular element and one 

upper triangular element.  

 

Then we are filling the p matrix whose entries are given below using the x and y coordinates 

of each node.   



 

Using this code, we are populating the p matrix and you will get like the one shown in the 

above matrix. In this domain, the total number of nodes will be 2601 (= 51 × 51) so you will 

get the size of p matrix as 2 × 2601. The x and y coordinates of each of the nodes are saved in 

the p matrix. For example, for node number 1 (first column of p matrix) (𝑥, 𝑦) is (0, 0), node 

number 2 (second column of p matrix) is (0.002, 0) and so on.  

Remember in this lecture, we are doing manual meshing. In the next lecture, we will use gmsh 

which is a freeware meshing software and bookkeeping of element numbers and node numbers 

can be avoided by using this software. Here we are discussing manual meshing because your 

coding fundamentals will get consolidated in this lecture. Then we can go to gmsh when we 

start looking at complex problems. Also, we are not going into coding for each of those 

problems. By that time, we would have explained you at least 2 or 3 codes using which you 

can develop codes for other problems using such logics.  
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Next, we will discuss about the t matrix. Now, this t matrix has information of subdomain 

numbers and global node numbers of each element. So, the size of this t matrix will be 4 × 

number of elements. The number 4 indicates the number of rows and each column represents 

an element, for example, column 1 denotes element 1 and the first entry (first row) of any 

column is the sub domain number and the 3 global node numbers of that element are in rows 

2-4.  The t matrix for the problem domain in this example is given below. 



1 1 1 ...

1 2 3 ...

2 3 4 ...

53 54 55 ...

t

 
 
 =
 
 
   

The code in the above slide will form the lower triangular elements first. Here, we will first 

take all the lower triangular elements for the bottom-most layer (first layer) of elements then 

we go to the second row, again we form t matrix for lower triangular elements. Like this, we 

finish all the lower triangular elements and then we form the entries for t matrix of the upper 

triangular elements.  So, using this code you can span the local triangular elements in the whole 

geometry.  Here we are taking the same material everywhere. Actually, you have 2 materials 

in this problem geometry, one is the copper conductor and surrounding the conductor you have 

air. But both copper and air are non-magnetic with 𝜇𝑟 = 1. 

That is why we are defining all the elements with the same sub domain number. But actually, 

you could have named the conductor as sub-domain number 1 and air as sub-domain number 

2. This will help to derive some physical quantity exclusively for the conductor using the code. 

For example, if you can calculate the energy associated with the conductor which is material 

number 1 or material number 2, then in that case you can define the 2 regions with different 

sub-domain numbers. But since we are using manual mesh and we already know the 

coordinates of each region and where it is lying, we do not have to differentiate the two regions 

separately by using 2 numbers. But in commercial software, for different materials although 

their properties maybe same, they are numbered by using different subdomain numbers. We 

could have done the same thing here also, but to reduce the coding effort we have named the 

subdomain numbers of all the elements by 1 only because the material property (𝜇𝑟 = 1) is 

same for both air as well as copper regions. Practically you have seen copper is diamagnetic 

material with 𝜇𝑟 slightly less than 1 but for engineering purposes, 𝜇𝑟 = 1 for copper.  

When you execute the subroutine explained in the above slide if h = 1 then the index is 1 and 

the following 3 commands will result into 1 2 and 53 and they are the global node numbers for 

the first element. Next time when you again run this loop with h = 2 then you will get 2 3 53 

as the 3 node numbers. So, this way, you would have formed the t matrix entries corresponding 

to all the lower triangular elements in the whole domain. 
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Similarly, we can form the t matrix entries for upper triangular elements which are given below.  

1 ... 1 1 ...

1 ... 1 2 ...

2 ... 53 54 ...

53 ... 52 53 ...

t

 
 
 =
 
 
   

We already got the columns of t matrix entries before the column with entries 1 1 53 52, which 

are the entries for the lower triangular elements when you execute the similar code (in the 

above slide) with little bit different commands than the earlier one. When you run the 

subroutine for the first time you will get 1 1 53 and 52 as its output. Similarly, when you execute 

it next time you will get 1 2 54 53 and likewise you can form entries for the other elements 

also. So then at the end these 2 subroutines you would have got all the entries of the t matrix. 
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We will go further. Now this command [A3 n_elements]=size(t) will give the size or 

dimensions of t matrix. The size of t matrix 4 × number of elements as I explained will get 

assigned to A3 and number of elements which is equal to the number of columns of t matrix 

will get assigned to the variable n_elements by this command. Similarly, the command [A1 

n_nodes]=size(p) will assign 2 to A1 because the size of the p matrix is 2× number of nodes. 

And the number of nodes will get assigned to n_nodes . And that is why and when you display 

those variables on the console, number of elements will be displayed as 5000 and number of 

nodes as 2601.  
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Now we will see how element coefficient matrices are formed. When we run the for loop from 

1 to number of elements and then we take in nodes. The three global nodes of each element get 

assigned to nodes matrix using the command nodes=t(2:4,element) because 2 3 4 rows of a 

column of the t matrix are the global node numbers of the element and the first row is the sub-

domain number. By executing this command, we would get global node numbers of each 

element, for element number 1, entries of the nodes matrix are 1 2 and 53 which are the global 

node numbers.  

Having got the global nodes of an element, we need to get x and y coordinates of those nodes. 

The x and y coordinates are stored in p matrix because it has information about the coordinates. 

By executing the 2 commands Xc=p(1,nodes') and Yc=p(2,nodes')  the corresponding x and y 

coordinates of these 3 nodes can be obtained. Again, Xc and Yc will be 3 × 1 matrices 

corresponding to x and y coordinates of the 3 global node numbers of the corresponding 

element under consideration. So, for each element we will get this information which will be 

helpful to form element coefficient matrices which will see later.  
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We have seen the expressions that are coded in the above slide earlier and shape functions N1, 

N2 and N3 are given by the three equations in the above slide. Now we call 𝑦2 − 𝑦3 as 𝑃1, 

𝑥2 − 𝑥3 as 𝑄1 and similarly the other 2 sets of expressions as indicated in the slide. Then we 

will code the expressions of 𝑃1 to 𝑄3 as given in the above slide to simplify our equations of 

the entries of local coefficient matrices. As I said earlier, these expressions would be required 

quite often when we develop an FE code.  

(Refer Slide time: 13:23) 

 

Now in our geometry we have a rectangular conductor and an air box as shown in the figure of 

the above slide. As far as the material properties are concerned both air and copper are non-

magnetic 𝜇𝑟 = 1 but what is the main difference between the 2 regions. There is current in the 



conductor region and we have to impose it for this region. So, we have to find all the elements 

which lie within this conductor so that we can assign current density and the corresponding b 

matrix for those elements can be derived. 

The x and y coordinates of the centroid of an element is calculated by using the following 

commands. 

 

Then we know that for this conductor, the coordinate of the leftmost point and the rightmost 

point, that is top most point on the right-hand side and bottom most point on the left side are 

(0.07, 0.07) and (0.03, 0.03) respectively, which are indicated in the figure on the above slide. 

Remember we had the whole geometry from 0 to 100 mm whereas the conductor was from 30 

to 70 mm in x and y directions. So in this code we are checking whether the x and y coordinates 

of the centroid of the element lie between 0.03 and 0.07 and if it is true, then that element is 

within the conductor rectangular area. 

For example, let us say we have an element like the one which is indicated in the above figure. 

Now, we are calculating the centroid of that element which is at the centre of the triangle. If 

that centroid lies within the conductor region, then the triangle is lying within the conductor. 

And if that being the case then we assign 𝜇 = 𝜇𝑟𝜇0 = 4𝜋 × 10−7 because 𝜇𝑟 = 1 and then 

𝑏𝐽 = 103. This we are taking as an example and we are considering current density in the 

conductor as 103A/m2. 

It should be noted that it can be current density or ampere turn density in case of a winding. 

Now the present case is like a single conductor which is like a 1 turn winding. So you have to 

feed current as ampere turn density. When you solve a transformer or a rotating machine 

example, there we will define ampere turn density in the current carrying areas. And it is equal 

to ampere turns divided by the corresponding cross-sectional area of the winding. So current 

density is fed in the conductor region and if the element is outside the conductor area then 

again, 𝜇𝑟 = 1 but 𝑏𝐽 = 0 because there is no current carrying part in the air region.  
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We have already seen the expression of the command delta= 0.5*abs((P(2)*Q(3))-(P(3)*Q(2))) in 

the above slide which calculates the area of the triangle. This expression can be verified by 

using the derivations in the above slide. We have already got the expressions for 𝑃𝑖s and 𝑄𝑖s.  

Also, absolute value is taken, because, in case, if the nodes are not numbered in the anti-

clockwise direction then area will be negative. We have explained the expressions in the above 

slide earlier in one of the previous slides. We verified this expression for the area of a triangle 

in terms of the determinant and coefficients 𝑃𝑖s and 𝑄𝑖s.   
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Now, we form element coefficient matrices. The entries of the element coefficient matrix can 

be formed by the following command.  



c(element,i,j)=((P(i)*P(j))+(Q(i)*Q(j)))/(4*delta*Mu(element)); 

It is so simple in terms of coding effort. Also, it is very straightforward. We have seen the 

following expression of 𝑐𝑖𝑗
𝑒 .  

𝑐𝑖𝑗
𝑒 =

1

𝜇𝑒
∫ 𝜵𝑁𝑖 ⋅ 𝜵𝑁𝑗𝑑𝑆

𝑒

𝑆𝑒
=

1

4∆𝜇𝑒
[𝑃𝑖𝑃𝑗 + 𝑄𝑖𝑄𝑗] 

Remember that this command is being run in the for loop for each element. Suppose for element 

number 1, we will get the corresponding 3×3 matrix. These matrices for all the elements are 

stored in a single variable as stacks. Mr. Sairam has explained about this thing earlier.  

3×3 matrices of elements 1, 2, 3, and so on are stacks and that would get formed when you run 

the for loop for each element. For example, for the first element, i and j goes from 1 to 3 and 

the corresponding 3×3 element coefficient matrix is formed. The corresponding source 

contribution to that element will be given by the command be(element,:) = bj*(delta/3)*[1;1;1] 

which is given by the following expression. ; 

 

If the current density exists in that element, it basically gets apportioned to each of the nodes 

of that triangular element equally as 
𝐽∆

3
. That is what is being coded in the above slide. 
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Going further, like we saw in case of the 1D FE code, we will see how to get the global 

coefficient matrix by combining all element coefficient matrices. Again, we will run a for loop 

from 1 to the number of elements. For each element, we take element coefficient matrices and 

go on appending them to the global coefficient matrix. Each element will have 3 nodes and 

some of the nodes and edges of each element may be common to different elements. By 

execution of the command nodes=t(2:4,element) for each element, we get its global node 

numbers using the t matrix into the 3×1 column matrix named as nodes. 

Then we run the following for loops in which i goes from 1 to 3, and j goes from 1 to 3.  

 

These for loops will read the 9 entries from the element coefficient matrix. Depending upon 

the corresponding global node number, each of those 9 entries will get appended to the 

corresponding entries of the global coefficient matrix because nodes(i), nodes(j) will return the 

global number from the nodes matrix. For example, element 1 is a lower triangular element 

with global nodes 1, 2, and 53.  When we run these two for loops with i = 1 and j =1, c(1,1,1) 

gets appended to C(1,1) as given in the following figure.  Because the local node number 1 of 

element 1 is global node number 1. 



 

So that is how the contribution of node 1 in element 1 will get added to global coefficient 

matrix. You can see here that the initial value of C(1,1) is 0 because for the first time we are  

appending something to the C(1,1) position of global coefficient matrix. So C(1,1) will get 

filled with c(1,1,1) ((1,1) entry of the element coefficient matrix of element 1).  

Similarly, for element 1, when i = 1 and j = 2, c(1,1,2) of element 1 will get appended to C(1,2) 

as shown in the figure below. Because again the global node number of this local node 2 is 2.  

 

When i = 1 and j = 3 for the first element, the global node number of local node 3 for the 

element 1 is 53. So c(1,1,3) of element 1 will be appended to C(1,53). The (1,3) position of 

local coefficient matrix of element 1 will correspond to (1,53) position of global coefficient 

matrix. So C(1,53) will get the value of c(1,1,3) of element 1. 

Now you go to element number 2501 which is the first upper triangular element that comes 

after going through all lower triangular elements. And the global node numbers for this element 

are 1, 53, and 52. Now for i = 1 and j = 1, 𝐶(1,1) ≠ 0 because this node number was already 

encountered for element 1. We will append c(2501,1,1) to 𝐶(1,1) as shown below.  

 

Now, the global node number 1 is common to element 1 (lower triangular element) and element 

2501 (upper triangular element). So that is why c(1,1,1) and c(2501,1,1) will be added in the 

formation of the global coefficient matrix. That is why C(1,1) will be contributed by (1,1) of 

element number 1 and (1,1) of element 2501.  The global node number 53 will be common to 



6 elements because this node is in the inner region of the grid.  You can see in the following 

figure, the node 53 will be common to 6 triangular elements.  

 

Since the global node number 53 is common to 6 elements, the diagonal entry C(53,53) will 

get appended 6 times. But this whole thing will be done using the following statement. 

c(element,i,j)=((P(i)*P(j))+(Q(i)*Q(j)))/(4*delta*Mu(element)) 

You may feel that it is so complicated, but it is just happening due to the execution of the above 

statement. Similarly, now we consider the b matrix (source matrix), which is a 1-dimensional 

matrix. For element number 1, be(1,1) of local node number 1 of element 1 will get appended 

to the global BJ(1). Initially, it is 0 and for the first time it will get updated by the contribution 

of element 1.  

For element 2501, global node number 1 will be encountered for the second time. The 

corresponding contribution of that element will get appended to BJ(1). And this goes on and 

by the end of this we would have got both global matrices C, BJ.  We are calling the source 

matrix as BJ and not B. Because this has the contribution of only current source. Another 

contribution from boundary conditions will be there and that matrix will be modified when we 

impose them. That is why we are calling this matrix as BJ. 
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Now, we apply the boundary conditions. For the outermost boundary, we are specifying 

magnetic vector potential (A) = 0. For all the nodes which are on the outer boundary of the 

domain we have to specify A = 0. Although it is a vector potential, here, since it is a 2D analysis, 

it is a scalar because its direction is already fixed. A is only in the z direction. Since, the 

direction of A is already known, we need to determine only the magnitude of A at every node 

in the domain. Because we have converted the problem domain wherein we need to calculate 

potential at every point to a problem where potentials are calculated only at the grid points. 

Once you calculate the potentials at grid points, then potential at any point within an element 

can be determined by using the formula 𝐴 = 𝑎 + 𝑏𝑥 + 𝑐𝑦 which is our original approximation. 

The way we imposed the boundary conditions in the above slide is also explained to you when 

we saw the 1D code. The boundary conditions are imposed by making the corresponding 

diagonal entry of the node as 1 and off-diagonal entries as 0. 

The easiest way to do this is first you make all the entries of the row that corresponds to a 

boundary node as 0 and then make the diagonal entry 1, rather than searching which is the 

diagonal entry. This way of imposing boundary conditions is straightforward. For the row of 

an ith boundary node, all entries are made 0 and the diagonal entry C(i,i) is made 1 by the 

following commands. 

 

In the last lecture, we saw an example of imposing 𝐴5 = 0 in 1D code. In that example, we 

made the diagonal entry of 5th row as 1 and on the right-hand side, we made the 5th entry of B 

as 0. All the diagonal entries are already 0 there. 

The same thing we repeat for the bottom edge by using the first for loop in the above slide 

which runs from 1 to 51 because n and m are equal to 51. Then for the second vertical edge we 

are running the second for loop in the above slide from 52 to 2500 with a step size of 50 because 

1 is already assigned in boundary edge. Since this is manual meshing, you have to do this 

bookkeeping of boundary nodes.  In the next lecture, we see the use of freeware called gmsh, 

there all these things become very easy. We do not have to worry about keeping the track of 

boundary node numbers to impose boundary conditions. 
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Then the same procedure that we use for this bottom edge is followed for the second vertical 

edge and finally for the top edge. Only difference is that the index for i is adjusted so that we 

get proper numbers of nodes on the edges when we execute the for loops. 
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Now we are nearing the end of this code. Although we are calling the right hand side matrix as 

BJ, it got modified with the boundary conditions. Now, this matrix has got the contributions 

from both source (J) and boundary conditions. Now, we have the matrix equation of the form 

CA = B. We have seen this earlier and then we have to invert C. So A is inv(C)B. Now, in both 

Matlab and Scilab, inv(C)B is calculated by using C\B.   



Now, we have got the solution (nodal potential values) in the matrix A. By executing the 

command (A=C\B) we have got unknown magnetic vector potential values at all points within 

the geometry. At the boundary points we will get the potentials that we have already imposed. 

Now we have to convert this A which is a column vector into a 2 dimensional matrix because 

the problem geometry is 2 dimensional.  It is of no use for us to have a column vector for the 

plotting purpose because we need to plot it in the 2 dimensional space. So that is why we are 

converting this column vector into an n×m matrix. And similarly the two rows of p matrix 

which are x, y coordinates of nodes in the problem domain has to be converted into an n×m 

matrix. That means at each of the nodes, we have x and y coordinates in p matrix. 

So, we have to convert them as 2 dimensional matrices for each of those x and y coordinates 

in the 2 dimensional plane. Now, we have to plot the corresponding A values, which are also 

in 2 dimensional matrix form.  These are accomplished by using the following commands.  

 

A similar command in Matlab is ‘reshape’. Those who are having Matlab commercial software, 

they can use the same code with using ‘reshape’ instead of ‘matrix’.  
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So, having done that now we need to plot the potential values using the following commands 

for surface and contour plots which are shown in the above slide.  



 

By observing the above plots, you can remember that A = 0 at the boundaries and A will be 

higher at the centre of the conductor. So, this is how you can plot the potentials. We will end 

this 19th lecture here and then we will see how the same coding can be done using the mesh 

generated using gmsh software, which is a freeware. Thank you. 
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