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In the previous lecture, we saw properties of shape functions and how to define potential at any 

point in a triangular element using the three shape functions of an element. Now, we will go further.  
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The functional for a 2-dimensional magnetostatic problem is given below.  

 

Here, A is the magnetic vector potential and the second integral in the above equation is from the 

source term (J). In this equation,  𝜇 is taken with the first integral and J is on the right-hand side 

of the governing PDE as shown below.  

1

𝜇
∇2𝐴 = −𝐽 

 That is why J gets multiplied by A in the functional expression.   



Now, A in the functional expression is substituted as ∑ 𝑁𝑖𝐴𝑖
𝑒3

𝑖=1  because A at any point within the 

element is 𝑁1𝐴1 + 𝑁2𝐴2 + 𝑁3𝐴3. This substitution results in the following equation.   

 

Then, we are representing 𝐹 as 𝐹1 − 𝐹2.  In the above equation, ∇ operator will operate only on 

𝑁1, 𝑁2, and 𝑁3 because they are the functions of x and y and 𝐴𝑖s are not functions of x and y because 

𝐴𝑖 at an ith node is varied to minimize the energy in the variational procedure.  

 So, 𝐴𝑖 is not a function of x and y. That is why 𝐴1, 𝐴2 and 𝐴3 are taken out of the integral in the 

above equation. Now, the expression of  𝐹1 can be expanded as given below.   

 

Now if we go further, the whole square term in the above equation can be simplified as given 

below using the identity 𝑎 ∙ 𝑎 = |𝑎|2.  

𝐹1 = ∑
1

2𝜇𝑒
∫ [{𝐴1

𝑒𝜵𝑁1 + 𝐴2
𝑒𝜵𝑁2 + 𝐴3

𝑒𝛁𝑁3} ∙ {𝐴1
𝑒𝜵𝑁1 + 𝐴2

𝑒𝜵𝑁2 + 𝐴3
𝑒𝛁𝑁3}] 𝑑𝑆𝑒

 

𝑆𝑒
𝑒

 

So that is why the square of the whole integrand in the previous equation can be written as the 

above expression using a dot product.  

When you expand the dot product in the above equation, you will get 9 terms. These 9 terms can 

be written using 2 summations as given in the following equation.  

 

We are taking 𝐴𝑖 and 𝐴𝑗 outside the integral as given in the above equation because they are 

independent of x and y.   
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 The above summation can be written in a 3 × 3 matrix as given below,  

 

𝐶𝑒 is the elemental coefficient matrix whose entries are given by the following equation.  

 

Now, we have simplified the integral expression of 𝐹1 as a matrix form. The bracketed term 

involving integral is called as 𝑐𝑖𝑗 which is expressed as the integral in the above equation. 

Also, remember that we can assume 𝜇𝑒 as constant over the element area. So, that is why 𝜇𝑒  is 

coming outside the integral because it is constant over the element.  

Now, we will see how do we calculate 𝑐𝑖𝑗 . Remember that the 𝐶𝑒 matrix is called as the element 

coefficient matrix and it has information about the geometry and the material properties.  

This is because, in ∇𝑁𝑖 ∙ ∇𝑁𝑗, 𝑁𝑖 and 𝑁𝑗 are functions of x and y and it has information about all 

the coordinates of the 3 vertices. Also in general, they are functions of x and y (any arbitrary point 



within the element under consideration). So, it has information about the geometry and material 

properties which will determine the energy stored in that element. By combining all such element 

coefficient matrices we will eventually form the global coefficient matrix.  

Now, 𝑐11 is calculated by substituting 𝑖 = 𝑗 = 1 and it is given in the following equation. 

 

Because the expression of 𝑁1 is given by the equation 𝑁1 =
1

2∆
[(𝑥2𝑦3 − 𝑥3𝑦2) + (𝑦2 − 𝑦3)𝑥 +

(𝑥3 − 𝑥2)𝑦]. So, ∇𝑁1 will be given by 
1

2∆
(𝑦2 − 𝑦3)𝐚̂𝑥 + (𝑥3 − 𝑥2)𝐚̂𝑦 and this is anyway constant. 

Now, ∇𝑁1 ∙ ∇𝑁1 will be simplified as given in the above equation. Since the integrand of the above 

integral is constant and integral dS will result in ∆. Similarly, you can calculate 𝑐12 and its 

expression is given below.  

𝑐12
𝑒 =

1

4𝜇𝑒∆
[(𝑦2 − 𝑦3)(𝑦3

 − 𝑦1
 ) + (𝑥3 − 𝑥2)(𝑥1 − 𝑥3) ] 

In the integral, there will be two terms (∇𝑁1 and ∇𝑁2) because i and j are not equal. Then 

corresponding expressions of 𝑁2 and 𝑁3 are given in the previous lecture. Similarly we can 

determine the expressions of 𝐶13 as given below. By following the same method, you can find 

expressions for all other remaining entries of  𝐶𝑒matrix.  

𝑐13
𝑒 =

1

4𝜇𝑒∆
[(𝑦2 − 𝑦3)(𝑦1

 − 𝑦2
 ) + (𝑥3 − 𝑥2)(𝑥2 − 𝑥1) ] 
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In general, we can write the expression of 𝑐𝑖𝑗 as given below. 

 

The expressions of  𝑃𝑖s and 𝑄𝑖s are given below.  

 

Then the area of the triangle will be given by ∆=
1

2
(𝑃2𝑄3 − 𝑃3𝑄2). This can be verified by using 

the derivations given below. 

 



We know that the area of a triangle can be calculated by using the determinant on the right hand 

side. If you expand this determinant, you will get the area as 𝛥 =
1

2
[𝑥2𝑦3 − 𝑦2𝑥3 − 𝑥1𝑦3 + 𝑦1𝑥3 +

𝑥1𝑦2 − 𝑦1𝑥2]. If you substitute 𝑃𝑖s and 𝑄𝑖s in the 𝛥 expression given on the right hand side, we 

will again get the same expression as shown in the above derivation.  

We will be using the expression of 𝑐𝑖𝑗 and area of the triangle in terms of 𝑃𝑖s and 𝑄𝑖𝑠 often in this 

course. Now, we will see the matrix representation of 𝐹2 which is related to the source current 

density J. The integral representation of 𝐹2 which is applicable for the whole domain is given 

below.  

𝐹2 = ∫J𝐴𝑑𝑆
𝑆

 

Then we go to discretized domain where magnetic vector potential is approximated as  

𝐴𝑒 = ∑ 𝑁𝑖(𝑥, 𝑦)𝐴𝑖
𝑒 ⇒ 𝐴𝑒 = 𝑁1𝐴1

𝑒 + 𝑁2𝐴2
𝑒 + 𝑁3𝐴3

𝑒

3

𝑖=1

 

That means from whole domain functional we went to element level representation. So the second 

term which is representing the source is converted from the whole domain to the element level.  
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The expression of 𝐹2 in the discretized domain can be written as given below. 



𝐹2 = ∑ ∫ J(∑ 𝑁𝑖𝐴𝑖
𝑒

3

𝑖=1

) 𝑑𝑆𝑒
 

𝑆𝑒
𝑒

 

Going further, J can be brought outside the integral because in most of the problems in magnetic 

field calculations, J over individual element is considered as constant. In most of the examples we 

have typically a conductor or winding for which the input current density is constant. In that case, 

J becomes independent of x and y.  

Now, we are just rearranging the above expression by interchanging the summation and the 

integral operator because the 𝐹2 is a scalar variable or a scalar number which represents energy. 

Whether you first integrate and then take summation or otherwise it will not matter. So by  

interchanging the integral and summation operators, we will simplify 𝐹2 as given below.  

𝐹2 = ∑ ∫ J(∑ 𝑁𝑖𝐴𝑖
𝑒

3

𝑖=1

) 𝑑𝑆𝑒 =
 

𝑆𝑒
𝑒

∑ J∫ (∑ 𝑁𝑖𝐴𝑖
𝑒

3

𝑖=1

)
 

𝑠𝑒

𝑑𝑆𝑒 = ∑ ∑ 𝐴𝑖
𝑒J∫ 𝑁𝑖𝑑𝑆𝑒

 

𝑠𝑒

3

𝑖=1

 

𝑒𝑒

 

Let 𝑏𝑖
𝑒 = J∫ 𝑁𝑖𝑑𝑆𝑒 

𝑠𝑒 . Now we will use the following expression whose derivation is fairly 

complicated.  

∬ (𝑁1)𝑙(𝑁2)𝑚(𝑁3)𝑛𝑑𝑆  =
𝑙! 𝑚! 𝑛!

(𝑙 + 𝑚 + 𝑛 + 2)!
2∆   ∗

 

𝑠𝑒

 

So, we will not get into the derivation of the above formula. But we will show a proof of this by 

applying it to a simple case in the next slide. Remember  𝑁𝑖s in the above expressions are functions 

of x and y. The above expression is a general form. When you have (𝑁𝑖)
1 as for the case of 𝑏𝑖

𝑒 , 𝑁2 

and 𝑁3 are not there.  

But in some other cases, in general you will have 𝑁1, 𝑁2 and 𝑁3 raised to some constant and in 

that case the above formula reduces to this after some complicated expression. ∆ in the above 

equation is the area of the triangle. 

In the next slide, we will see one example for this. Now in the case of 𝑏𝑖
𝑒 , 𝑙 = 1, 𝑚 = 𝑛 = 0 

because 𝑏𝑖
𝑒 = J∫ 𝑁𝑖𝑑𝑆𝑒 

𝑠𝑒 . By substituting the values of 𝑙, 𝑚, 𝑛 in the above formula you get the  

value of 𝑏𝑖
𝑒 as 

𝐽∆

3
 after substitution and other simplifications.  



Similarly, you will get the values of 𝑏1
𝑒, 𝑏2

𝑒 and 𝑏3
𝑒 as 

𝐽∆

3
. Then you will get the element level 

source matrix as given below. 

 

 So,  𝐵𝑒 is the element level contribution by the source J. Actually, J is distributed over the entire 

elemental area but in the discretized domain, it is apportioned equally to the 3 nodes. So, J which 

was distributed over the entire elemental area is apportioned equally as 
𝐽∆

3
 at the nodal vertices in 

the discretized domain. Then 𝐹2
𝑒, the energy related to the element due to the source term can be 

written in matrix form as given below. Now, 𝐹2 has to be added to 𝐹1 to calculate the total energy.  

𝐹2
𝑒 = [𝐴𝑒]T𝐵𝑒 
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Now, let us consider a basic example to verify this formula. Let us take a triangular element as 

shown in the following figure.  



 

We have purposely taken a right-angled triangle so that we can get a simplified integral. The 

vertices of this triangle are (0,0), (1,0), and (1,1). So, the area of the triangle calculated using 

1

2
(𝑏𝑎𝑠𝑒 × ℎ𝑒𝑖𝑔ℎ𝑡)  is simply 

1

2
.  

We know the expression for 𝑁1 as 𝑁1 =
1

2∆
{(𝑥2𝑦3 − 𝑥3𝑦2) + (𝑦2 − 𝑦3)𝑥 + (𝑥3 − 𝑥2)𝑦}. Now, 

you substitute the values of various coordinates in 𝑁1 and then you will get the 𝑁1 expression as 

1 − 𝑥. Then you can verify this expression by substituting the coordinates of node 1, 𝑥 = 0 which 

gives the value of 𝑁1 as 1, which should be the case as per the properties of shape functions. At 

the other 2 nodes (2 and 3), we will get the value of 𝑁1 as 0. At nodes 2 and 3, 𝑥 = 1. So, 𝑁1 =

1 − 1 = 0.  So, at the other two nodes, 𝑁1 goes to 0. This is the basic property of shape functions  

and you can also easily verify these properties.  

Similarly, the expressions for 𝑁2 and 𝑁3 for this element can be derived. The expressions of the 

two shape functions are 𝑁2 = 𝑥 − 𝑦 and 𝑁3 = 𝑦. You can easily verify these expressions.  

For node 1, we are trying to evaluate ∫ 𝑁𝑖𝑑𝑆𝑒 

𝑠𝑒 .  Now we evaluate the integral over the element as 

given below.  

∬ 𝑁1

 

∆

𝑑𝑥𝑑𝑦 = ∫ [ ∫ (1 − 𝑥)𝑑𝑦

𝑦=𝑥

0

] 𝑑𝑥

1

0

 

For x, we are integrating from 0 to 1 because x varies from 0 to 1 as shown in the above figure and 

y varies from 0 to whatever is the y on the hypotenuse line joining the nodes at (0,0) and (1,1).  

So, the limits of y is from 0 to 𝑦 =  𝑥. Because the equation of the line is 𝑦 =  𝑥 . So, the limits 

of our integration is 0 to 1 for x and 0 to 𝑦 =  𝑥 for y. The evaluation of the integral is given below.  

∬ 𝑁1

 

∆

𝑑𝑥𝑑𝑦 = ∫ [ ∫ (1 − 𝑥)𝑑𝑦

𝑦=𝑥

0

] 𝑑𝑥

1

0

= ∫[(𝑦 − 𝑥𝑦)|0
𝑥]𝑑𝑥

1

0

= ∫(𝑥 − 𝑥2)

1

0

𝑑𝑥 = [
𝑥2

2
−

𝑥3

3
]

0

1

=
1

6
 



You finally get the value of the integral as 
1

6
=

1/2

3
=

∆

3
.  The area of triangle (∆) is half. So, 

we verified the formula 
∆

3
 and it worked for this right-angled triangle. If it can work for this right 

angled triangle, it will work for any arbitrary triangle also.  
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Similarly you can verify for node 2. We already got the expressions for 𝑁2(= 𝑥 − 𝑦) and 𝑁3(= 𝑦) 

and then if you do the integration ∬ 𝑁2
 

∆
𝑑𝑥𝑑𝑦 and ∬ 𝑁3

 

∆
𝑑𝑥𝑑𝑦 you will get 

1

6
.  
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We have derived the entries for element level coefficient matrices and source matrices. How many 

element-level matrices are there in this example? 18, because there are 18 elements as shown in 

the figure on the above slide. Remember in this geometry there is a rectangular conductor at the 

center of the domain. Now in this example there are 18 elements which are indicated with numbers 

written in red colour. Numbers written in blue colour (1, 2, 3) are the local node numbers and 

numbers in green colour are the global node numbers (1, 2, 3, 4, ………, 15, 16). Using 18, 3 × 3 

element coefficient matrices which we have derived in the previous slide, we have to form one 

16 × 16 global coefficient matrix.   

The dimensions of the global coefficient matrix is 16 × 16 because there are 16 global nodes and 

eventually there are 16 potential variables with respect to which we have to minimize the energy. 

Out of these 16 nodes, potentials at some of the nodes are known. For example, here, we are going 

to impose A = 0 on the whole outer boundary. So, the potentials of the boundary nodes are known.  

Eventually, we will impose the boundary condition A = 0. So, there are 16 nodes in our geometry 

and the matrix size will be 16 × 16. As we saw in 1D example, here also we will have a 

connectivity matrix.  So, here we will have the connectivity matrix which is given below.  

 

In the above matrix, we have 𝑒1 to 𝑒18  (18 elements) and the corresponding global node numbers 

are given in each column of the matrix. The global node numbers for element number 1 are  1, 6, 

5. For element number 2, global node numbers are 1, 2, 6.   

Similarly, you can do for the rest of the elements. The global source matrix with entries 𝐵1 to 𝐵16 

is given below.  

 



We have evaluated the element level contributions (𝑏1
𝑒 , 𝑏2

𝑒 , 𝑏3
𝑒 for each element) in the previous 

slide. Using element level source matrices, we have to form the global source matrix given in the 

above equation. How do we do that? We will see in the further slides.  
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In 1D code, we saw how do we combine various element coefficient matrices to calculate the 

entries of the global coefficient matrix. We will do the same thing in this 2D example also. We 

will see how to find out 𝐶(1,1) entry of  the global coefficient matrix.  In this discretization, 2 

triangles are incident on global node number 1. Because this node is a vertex of element number 

1 and element number 2. So 𝐶11 = 𝑐11
𝑒1 + 𝑐11

𝑒2. Effectively, the potential at node number 1 

contributes in deciding the energy for both elements 1 and 2.  

Similarly, 𝐶22 = 𝑐22
𝑒2 + 𝑐11

𝑒3 + 𝑐11
𝑒4 because node 2 is common to elements 2, 3, 4 and will have 

corresponding 3 contributions. The global node number 6 (𝐶66 = 𝑐22
𝑒1 + 𝑐

33

𝑒2
+ 𝑐33

𝑒3 + 𝑐22
𝑒8 + 𝑐11

𝑒9 +

𝑐11
𝑒10) has contributions from 6 elements. Because it is common to 6 elements. Also, you have to 

remember that some diagonal entries will have addition of multiple terms and some off diagonal 

entries will have addition of 2 terms or contributions from two elements.  

For example, 𝐶16 = 𝑐12
𝑒1 + 𝑐13

𝑒2 = 𝐶61. In the case of 1D, off-diagonal elements contributions from 

different elements was not there because in 1-dimensional discretization  only nodes were common 

between two adjacent elements. But in 2D along with nodes, edges are also common to 2 elements.  



Also, note that 𝐶13 = 0 because there is no direct connection between nodes 1 and 3. Similarly, 

for the global source matrix  𝐵1 = 𝑏1
𝑒1 + 𝑏1

𝑒2. We have already calculated the element level source 

matrices in the previous slide.  Similarly, 𝐵2(= 𝑏2
𝑒2 + 𝑏1

𝑒3 + 𝑏1
𝑒4) will have 3 contributions from 3 

elements and so on. So at the end of this step, you would have got one global coefficient matrix of 

size 16 × 16 and one global source matrix of size 16 × 1, by combining all element coefficient 

matrices and element level source matrices. 
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Now, you have the total energy 𝐹 = 𝐹1 − 𝐹2 written in matrix form as  

 

The dimensions of all the matrices are also given in the above equation. Remember, always all 

these 𝐴 and 𝐵 matrices are column vectors and 𝐴𝑇 will become a row vector. So, the size of 𝐴𝑇 

will be 1 × 16, C will be 16 × 16 and A will be 16 × 1. The whole product will be 1 × 1.  

Similarly, in the second term, the size of 𝐴𝑇 is 1 × 16 and 𝐵 is 16 × 1. So again, the size of the 

product 𝐴𝑇𝐵 will be 1 × 1, it should be, because this F is the energy of the whole domain and it is 

a scalar. So, it will be 1 × 1. Then the fourth step of the whole FEM procedure is energy 

minimization and then imposing the boundary conditions.  



To minimize the energy (F) with respect to the potential variables, we have to evaluate the 

following equations. 

 

Now this matrix A is a 16 × 1 column vector. That means minimization of energy with respect to 

16 potentials amounts to 16 equations. Those 16 equations are written as given in the above 

equation. So, when you differentiate  F by individual 𝐴𝑖s, you will get the matrix equation of the 

form 𝐶𝐴 − 𝐵 = 0 ⟹ 𝐶𝐴 = 𝐵. But here the matrix 𝐵 has contribution due to source only.   

Now there is an additional contribution due to boundary conditions. We already discussed the point 

that the right hand side matrix 𝐵 will have contributions from two things, one is the source and the 

other is the boundary condition. So now, we will impose the boundary conditions and modify the 

system of equations. The boundary conditions have to be imposed to all the nodes on the outermost 

rectangle. All the potentials on the outermost boundary are equal to 0. This we have seen earlier. 

Here we are taking A = 0, as you know, instead of 0, you could take something else also, but the 

answer (field distribution) will not change because flux is ∮ 𝐴 ∙ 𝑑𝑙 and for a 2D case, it will be 

simply the difference of potentials at 2 points. So only the difference matters. If you scale the 

boundary condition to some other value, the difference between any two potentials is going to 

remain the same.  
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Boundary conditions can be imposed by transferring terms containing known voltages to the right 

hand side matrix and modifying B matrix and the system of equations get reduced to 4 × 4. But, 

it is not amenable for coding. In the previous code, Mr. Sairam has already explained you both 

ways to apply boundary conditions like reducing the system to 4 × 4 and how we can continue 

with the original matrix equations. So, both things were explained with respect to the 1D code.  

So, in this example, we will continue to solve the 16 × 16 system because that is easy from the 

point of coding rather than reducing it to  4 × 4.  Because if you want to reduce the matrix, we 

have to do some row operations like adding or subtracting some row from the other and then 

simplify it. So, this procedure involves a lot of extra operations. Instead of doing that you can 

operate the whole 16 × 16 matrix, although it looks like a bigger matrix.  

Now, for example, if you want to impose the condition 𝐴5 = 0 where node 5 is on the outermost 

boundary. How will we do that? For the fifth row of  𝐶𝐴 = 𝐵, you make all the off-diagonal entries 

as 0 and make 𝐶(5,5) as 1 and then make the corresponding fifth entry of B matrix as 0.  

After imposing boundary conditions, if you expand 𝐶𝐴 = 𝐵, you will get 𝐴5 = 0. So, effectively 

you have imposed boundary condition 𝐴5 = 0. Now on the 12 boundary nodes, you impose the 

same condition. Here, there are 12 boundary nodes. So, 12 rows of the C matrix will get modified 

as explained for the case of node 5. So, in 12 rows you will make all off diagonal entries as 0 and 

the corresponding diagonal entry as 1 and make the corresponding B entry as 0. Then you invert 



the matrix C and calculate 𝐴 = 𝐶\𝐵. Finally, by taking 𝐶−1 and multiplying it by B, you will get 

A.   

(Refer Slide Time: 33:30) 

 

Then we will get the solution (nodal potentials). The solution shown in the above slide is for coarse 

mesh. In this figure, you can see the field lines are not smooth. In one of the very first lectures, it 

was mentioned that by just looking at the field distribution, you can judge whether your meshing 

is good enough or not. In the figure, the field contours are not smooth or circular, that means there 

is a scope for improvement in the mesh.  
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After making the mesh very fine, you will get a solution whose field contours are quite smooth as 

shown in the above figure. But in the above figure, you can see that the boundary is quite close to 

the current-carrying conductor and you can see that the contours suddenly become flat near the 

boundary although they are smooth. Ideally, if it was an isolated conductor, all these flux contours 

particularly the ones near the boundary should be circular.  

For the present problem to become an isolated conductor, the boundary should be far off so that 

the boundary conditions do not affect the field distribution. Since, we have not put that boundary 

far off, we can see that suddenly, we are forcing the potential to go to 0. Otherwise, the flux 

contours would have been circular.  

In fact, later on, we will see by using a closer boundary, we will not get the correct answer when 

we calculate inductance of the bar. We will find that the error is high when the boundary is closer. 

When we take the boundary far off, the calculated inductance is more correct.  

So, with this we will end the 18th lecture. I hope you have now understood the finite element 

procedure because we have seen 1D and 2D examples. In the next lecture, we will study a 2D 

code, but not in details because we have already seen a 1D code. Thank you.          
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