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2D FEM: Problem Definition and Shape Functions  

 

Welcome to this 17 lecture. Now we are ready to go into two-dimensional FE analysis.  
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We will start with a magnetostatic problem which involves a rectangular conductor carrying 

current I. The conductor is enclosed in a rectangular boundary. As the current is going into the 

plane, the field lines are in the clockwise direction. The dimensions of the problem geometry are 

also given in the figure shown in the above slide. Please note that this boundary is considerably  

closer to the conductor.  

If you want to analyze the field of an isolated conductor, then the outer boundary has to be far 

away so that the imposed boundary condition does not affect the field distribution. Here, the FEM 

formulation and code are demonstrated by taking the boundary which is very close to the 

conductor, so that we can explain easily. But eventually, when we write a code for this problem, 

we can take this boundary far off, so that the applied boundary condition does not affect the field 

distribution. So, why we are saying that boundary condition will affect the solution is because 



when you impose magnetic vector potential A = 0, it influences the field distribution as the 

boundary is closer to the conductor. We will see more about it later.  
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The governing equation for this magnetostatic problem is  ∇2𝐴𝑧 = −𝜇𝐽𝑧. As we have discussed 

earlier, in case of a two dimensional problem, we take a cross section which is perpendicular to 

the direction of the applied current. So the direction of current and therefore current density J is 

fixed, which is in z direction. The direction of A also gets fixed along z direction. That is why the 

vector form of A and J is by replaced Az and Jz.  

Effectively, this reduces to scalar  Poisson’s equation. Otherwise, it would be a vector Poisson’s 

equation with three components (𝐴𝑥, 𝐴𝑦, 𝐴𝑧). This concept also we have seen in the basics of 

electromagnetics. So, by considering a 2D plane perpendicular to J, it reduces vector Poisson’s 

equation to a scalar form  with unknowns as 𝐴𝑧 at various points in the domain. The corresponding 

functional for this PDE is given below .  

 

Now you are very familiar with writing a functional for a given PDE. In case of electrostatics, you 

have 𝜖𝐸2 as integrand for the first integral in the above expression, here you have 
1

𝜇
|∇𝐴|2. In basics 



of electromagnetics, we have explained to you that when either 𝜇 or 𝜖 appear singly, that means, 

if 𝜖 appears in the numerator, then 𝜇 will appear in denominator. So 
1

2
𝜖𝐸2 got replaced by 

1

𝜇
|∇𝐴|2.   

The ∫
𝑠
 𝐽𝐴𝑑𝑆 (source) term will appear on the right hand side. The source term in the PDE gets 

multiplied by the corresponding potential (here A) in the functional expression. So, the functional 

expression in the above equation can be directly written based on the theory that we have seen in 

the previous lectures. The boundary condition is 𝐴𝑧 = 0 on the outer most boundary. As explained 

earlier, 𝐴𝑧 need not be 0 always. It can be some other number like 50 or 100. If we change the 

boundary condition value then the values of A at all the nodes in the domain will get shifted by 

the corresponding value.  

Flux flowing between any 2 points in a domain is just a difference between the A values at the 

corresponding points (𝐴1 and 𝐴2). So, even if you change the value of the reference potential from 

0 to some value, the corresponding field distribution (𝐵𝑥, 𝐵𝑦) values will not change.   

That is why for simplicity, always in the magnetostatic problems or magnetic field problems, we 

impose boundary condition or reference potential as A = 0.  We have already summarized the FEM 

procedure which is given below.  

 

The first step of FE procedure is discretization of the geometry. If it is a 2D problem, we will have 

to use either triangular or quadrilateral elements. Then we approximate the solution. In 1D, we 

approximated the solution as 𝑎 + 𝑏𝑥 . In case of 2D, the approximation will be 𝑎 + 𝑏𝑥 + 𝑐𝑦.  

Then the next step is assembly of the global coefficient matrix. Now, assembly of the global 

coefficient matrix effectively represents adding the energies of all elements. So the global 

coefficient matrix represents the energy of the entire domain. Because the global coefficient matrix 

gets formed by appending all the element coefficient matrices.  



Each of the element coefficient matrices represents the corresponding energy of the element under 

consideration and the global coefficient matrix represents the energy of the entire system.  

Remember that the system of equations will also have a source term and that also contributes to 

the overall energy of the system. The first integral in the above equation will give you K matrix 

and the second integral will give you B matrix.  

 In the previous lecture, we used K or A matrix. But here we will call the global coefficient matrix 

by C, because already we have used the variable A for magnetic vector potential. So, the global 

coefficient matrix will be denoted by C. The final system of equation will be 𝐶𝐴 = 𝐵, where 

unknowns are magnetic vector potentials (𝐴𝑧) at all the nodes in the discretized domain.  

Then to form the final linear system of equations, we need to minimize the total energy with respect 

to nodal magnetic vector potentials and apply the boundary conditions. As we have seen in case 

of 1D, the contributions to the final B matrix will be from boundary condition and source condition. 

That is why the B matrix will have contributions from J, which is the source, as well as the 

boundary condition (A = 0) that we are imposing on the outermost rectangular boundary. So, 

always remember that when we devolop an FEM formulation, the right hand side B matrix will 

eventually have contributions from source and boundary conditions. When we will get final linear 

system of equations 𝐶𝐴 = 𝐵, you have to take inverse to calculate the unknown vector A which 

represents magnetic vector potentials at various nodes in the discretized domain.  

Let us go into each step of the FE procedure. In the first step, we have to discretize the geometry. 

In 1D problems, we generally have segments as discretized domains which we have seen earlier. 

In 2D problems, you can have either triangular or quadrilateral elements and in 3D, you will have 

cubic, tetrahedral or prismatic elements. How do we decide element size? Earlier we discussed 

that whenever there is a non-uniform field in a problem domain, you will need a fine discretization.  

Similarly, when the frequency of excitation is high and eddy currents are induced in the conductors 

and the current is confined to a small surface depth called skin depth. Then you need to have fine 

elements in that zone so that you can capture the rapid variation of the field as well as the losses. 

If you have to capture the power loss occurring in the conductor, then you need to have a fine mesh 

in that region. Such points will be considered while deciding the size of the element.  



The type of elements will be decided based on whether the problem is 1D or 2D or 3D and whether 

we should go for cubic, tetrahedral or prismatic for 3D, triangular, or quadrilateral for 2D, is a 

matter of convenience and coding. For example in this course, we will always use triangular 

elements because they are much simpler to code.  
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Now let us go further. The second step is solution approximation. In case of 2D, you can have a 

linear or quadratic element. What is a linear element? Potential approximation for a linear element 

in 1D analysis is 𝑎 + 𝑏𝑥. Whereas the approximation for a quadratic element in 1D analysis is 𝑎 +

𝑏𝑥 + 𝑐𝑥2 . For 2D FE analysis, potential approximation for a linear element will be 𝑎 + 𝑏𝑥 + 𝑐𝑦 

whereas the second order approximation will be 𝑎 + 𝑏𝑥 + 𝑐𝑦 + 𝑑𝑥𝑦 + 𝑒𝑥2 + 𝑓𝑦2. 

The number of constants in the potential approximation is equal to the number of nodes in the 

corresponding element. For example, a 1D linear element which is just a segment will have 2 nodes 

so the potential approximation (𝑎 + 𝑏𝑥) for this element will have 2 unknown constants (a and b). 

A triangular element will have 3 nodes. So, the number of constants in the corresponding potential 

approximation (𝑎 + 𝑏𝑥 + 𝑐𝑦) is 3. Now why this is important? Eventually to get an exact solution 

for the linear system of equations that you solve, the number of unknowns should be equal to the 

number of equations.  



So, the number of nodes in each element equal to the number of constants in the approximation 

will ensure an exact solution for your problem. For example, approximation for a quadratic 2D 

element will have 6 constants. So there are 6 nodes in the corresponding 2D quadratic triangular 

element, 3 of the 6 nodes are at the vertices and the other 3 nodes are at the mid points of the 

corresponding edges of the triangle as shown in the following figure.  

 

Similarly, you will have 2D quadrilateral element like the one shown in the following figure. Then 

the corresponding potential approximation for this element will be 𝑎 + 𝑏𝑥 + 𝑐𝑦 + 𝑑𝑥𝑦 with 4 

unknown constants which are to be determined for each element. Remember that we directly do 

not determine the unknown constants a b c, because we eliminate those constants with the nodal 

potentials as we have seen in the case of 1D. Effectively, we convert the problem in which 

constants need to be determined to a problem wherein we directly determine the nodal potential 

values because we eliminate the constants a, b, c, and so on.  We will see  this procedure in this 

lecture.  

 

A 3D tetrahedral element will have 4 nodes as shown in the following figure. So the corresponding 

potential approximation 𝑎 + 𝑏𝑥 + 𝑐𝑦 + 𝑑𝑧 will have 4 unknown constants.  

 



A cube element will have 8 nodes. So, there are 8 constants in the potential approximation 𝑎 +

𝑏𝑥 + 𝑐𝑦 + 𝑑𝑧 + 𝑒𝑥𝑦 + 𝑓𝑦𝑧 + 𝑔𝑧𝑥 + ℎ𝑥𝑦𝑧. Now you have to know when to use which element. 

Here, the question is when do we use linear elements or when do we use quadratic elements?  

If you are using linear elements, then you have to use a higher number of elements for problems 

with non-uniform field distribution. When you are using quadratic elements, you can use a lower 

number of elements. But one cannot say confidently which one would be better. Because the 

computational burden may be more or less same. So, it is a matter of convenience to choose a 

higher number of first-order elements compared to a lower number of second-order elements.  

Because even though the number of second order elements is less in number, the expression for 

potential approximation is more complex. Also the number of nodes are increasing because of 

increase in the order of approximation. So, the complexity of the formulation is higher in the case 

of a quadratic element, although the number of elements is less and therefore the computational 

burden maybe more or less the same.  

Choosing the element type and the number of elements depends on the convenience of the person 

who is developing the code. That is why in commercial FE software both options are generally 

available. The user has to choose whether he wants to use linear or quadratic elements in the 

simulation.  
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Going further, the third step is the assembly of the global system of equations. For that, first we 

have to find element coefficient matrices, and then combine all these matrices to form the global 

coefficient matrix.  Now we will start with the triangular element shown in the following figure.  

 

For this element, the nodes are numbered in the anti-clockwise direction because then only the 

area of the triangle (∆) calculated using the following expression will be positive. 

∆=
1

2
|

1 𝑥1 𝑦1

1 𝑥2 𝑦2

1 𝑥3 𝑦3

| 

The above expression for calculating the area of a triangle is a standard formula where 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), and (𝑥3, 𝑦3) are the coordinates of the vertices of the triangle under 

consideration. If you do not number these nodes in anti-clockwise fashion and if you number them 

in the clockwise direction, then the area calculated will be negative. To avoid this issue, we always 

number the nodes in the anti-clockwise direction.  

Now, using the potential approximation for a linear element 𝐴𝑒 = 𝑎 + 𝑏𝑥 + 𝑐𝑦 and following the 

procedure that we did for the 1D case, we will develop the 2D FE formulation. The magnitudes of 

potentials at the three nodes 𝐴1, 𝐴2 and 𝐴3 are as given below.  

 

The ~ represents that the potential functions are approximated solutions. As we did in the 1D 

formulation, we eliminate the constants a, b, and c and express them in terms of nodal potential 

values which are given in the above equation.  



Effectively, the total energy of the system which is a function of a, b, c constants of each element 

is represented as a function of the nodal potential values in the discretized system. This conversion 

makes the formulation simpler. In the variational procedure that we have been seeing in this course, 

the corresponding minimization procedure involves varying the potentials at each of the nodes in 

the system and we see for which combination of potentials we get the minimum energy condition.   

It is very logical to eliminate these a, b, c constants from the formulation and express the energy 

of each element in terms of the potentials of the three vertices. Then we have the discretized 

problem domain with 18 elements as shown in the following figure.  

 

Now the elements in the above figure are uniformly distributed because using this example we 

want to explain the FEM procedure on a paper. But if you use some software then the elements 

will not be so less in number like the way shown in the above figure, because in the above figure 

there is only one layer of elements between the conductor and the outermost boundary. So the 

solution obtained using the above discretization is going to be very approximate. The expression 

of magnetic vector potential for any element is simply 𝑎 + 𝑏𝑥 + 𝑐𝑦 . The expression for B will be 

calculated by using 𝐁 = ∇ × 𝐀. When we expand 𝐁 = ∇ × 𝐀,  we will get derivatives of the 

components of A. We will see the expression of B using the linear approximation in one of the 

further lectures.  

If 𝐴 = 𝑎 + 𝑏𝑥 + 𝑐𝑦 and if you take the derivative of A with respect to 𝑥, it will be only 𝑏. 

Derivative with respect to 𝑦 will be only 𝑐. So the components of B, 𝐵𝑥 and 𝐵𝑦 will be constant 

and hence the overall magnitude of B will be constant in the corresponding element. That means 



effectively we are approximating B as a constant which will lead to errors in the solution if we use 

the mesh as shown in the above figure. Later on, when we complete the FE code, we will increase 

the number of elements in the problem domain and we can observe how the solution improves.  
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The approximate function of magnetic vector potential is written in matrix form as given below.  

𝐴𝑒 = 𝑎 + 𝑏𝑥 + 𝑐𝑦 = [1 𝑥 𝑦] [
𝑎
𝑏
𝑐

] 

 And then we replace the constants with the expression in terms of nodal potentials as given below.  

𝐴𝑒 = 𝑎 + 𝑏𝑥 + 𝑐𝑦 = [1 𝑥 𝑦] [
𝑎
𝑏
𝑐

] = [1 𝑥 𝑦] [

1 𝑥1 𝑦1

1 𝑥2 𝑦2

1 𝑥3 𝑦3

]

−1

[

𝐴1
𝑒

𝐴2
𝑒

𝐴3
𝑒

] 

When we expand the inverse in the above expression, you can express A as  

𝐴𝑒 = ∑ 𝑁𝑖(𝑥, 𝑦)𝐴𝑖
𝑒 ⇒ 𝐴𝑒 = 𝑁1𝐴1

𝑒 + 𝑁2𝐴2
𝑒 + 𝑁3𝐴3

𝑒

3

𝑖=1

 

 wherein 𝑁1, 𝑁2, and 𝑁3 are the shape functions which are expressed as given below. 



 

In the previous lecture, we have derived the same expression for 1D formulation. We derived 

𝑁1 and 𝑁2 for the local coordinates 1, 2 of each element. In the present problem, we have 3 nodes 

for every element, so we will have 3 shape functions, 𝑁1, 𝑁2, and 𝑁3.  The ∆ in the above 

expression is the area of the triangle. The following property of shape functions that we saw in 

case of 1D holds for 2D also.  

 

From the above expression, the value of shape function 𝑁1 at node 1 will be equal to 1, and 0 at 

nodes 2 and 3. Similarly, the value of 𝑁2 will be 1 at node number 2, and 0 at nodes 1 and 3. For 

example, in the expression of 𝑁1, if you substitute x as 𝑥1 and y as 𝑦1, we will get the value of the 

shape function as 1. If you substitute x as 𝑥2, and y as 𝑦2 in the expression of 𝑁1, you will get its 

value as 0.  Similarly, you can verify for 𝑁2 and 𝑁3. We will discuss why this property is important.  
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Let us take 2 adjacent or contiguous elements as shown in the following figure.  

 

Now by the property of shape functions, the potential at nodes 2 and 3, as well as at any point on 

the segment joining nodes 2 and 3 will be decided by the potentials at nodes 2 and 3 only. Because 

the value 𝑁1 is 0 at nodes 2 and 3 and at any point on the segment 2, 3. This can be verified by 

substituting expressions of x and y that represents any point on the segment 2-3 in 𝑁1, you will 

find that the value of 𝑁1 on this segment will be 0. So in the expression 𝐴𝑒 = 𝑁1𝐴1
𝑒 + 𝑁2𝐴2

𝑒 +

𝑁3𝐴3
𝑒 ,  𝑁1 is zero for any point on segment 2-3 and the value of A at any point on this segment is 

given by 𝐴𝑒 = 𝑁2𝐴2
𝑒 + 𝑁3𝐴3

𝑒 . This can be proved for the two elements in the above figure. 

So, the value of the potential at any point on the segment 2-3 will be decided by the potentials of 

nodes 2 and 3 only.  At any of point on segment 2-3, if 𝑁1 is 0, then potential at that point will be 

decided by 𝑁2 and 𝑁3. This should be the case because if it is not true and if the potentials at nodes 

1 and 4 were deciding potentials on segment 2-3, then when you calculate the potential at any 

(𝑥, 𝑦) on the segment with reference to elements 1 and 2, the two calculated potentials will be 

different and mathematically it will be absurd. So, it is very logical that the potential at any point 

on the segment 2-3  is decided by the potential values of nodes 2 and 3 only. In other words, the 

continuity of potential across element boundaries is ensured by this property of shape functions 

and this is called as ensuring continuity of potential. That means the variation of potential in the 

two elements is continuous at the interface. Otherwise, the formulation will be mathematically 

absurd.  
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As explained earlier, 𝑁1 should be equal to 1 at node 1 and 0 at nodes 2 and 3. The value of 

magnetic vector potential at node 1 will be 𝐴1
𝑒 as derived below. 

𝐴𝑒(𝑥1, 𝑦1) = 𝑁1(𝑥1, 𝑦1)𝐴1
𝑒 + 𝑁2(𝑥1, 𝑦1)𝐴2

𝑒 + 𝑁3(𝑥1, 𝑦1)𝐴3
𝑒 = 𝐴1

𝑒 

Similarly, for the other two also 𝐴𝑒(𝑥2, 𝑦2) = 𝐴2
𝑒  and 𝐴𝑒(𝑥3, 𝑦3) = 𝐴3

𝑒 . The variation of shape 

function properties are represented in the following figure.  

 

In the above figure, the triangular element is formed by nodes 1, 2, and 3. Then the value of 𝑁1 

will be equal to 1 at node number 1 and that will reduce to 0 linearly at nodes 2 and 3.  

Somewhere inside the triangle the values of 𝑁1, 𝑁2, and 𝑁3 will exist and they will not be equal to 

zero. If the point is shifted towards node number 1, the contribution of 𝑁1 will increase and the 

contributions of 𝑁2 and 𝑁3 will reduce in deciding the potential at that point. It is more intuitive, 

of course, this can be proved mathematically.   



When the point coincides with node 1, then potential of that point is solely decided by node 1. 

Suppose the point is at the centroid of this triangle, then the values of 𝑁1, 𝑁2, and 𝑁3 will be equal 

to 1/3. That means potentials at the three vertices of the triangle will have equal contributions in 

deciding the potential at the point under consideration. In other words, the potential at the centroid 

is the average of potentials at the three vertices of the triangle. We will stop here and continue in 

the next lecture.  
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