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1D FEM: Scilab Code 

 

Welcome to the 16th lecture. As we discussed in the previous lecture, we will be developing an 

FEM code in Scilab. Scilab is a freeware that can be downloaded and installed.  Also, its syntax is 

similar to MATLAB. So, the same code can be used in MATLAB as well. The codes that we are 

demonstrating in this lecture and the course can be used in MATLAB also.  

(Refer Slide Time: 00:53) 

 

Going further into the code,  as mentioned in the previous lecture, the steps involved in an FE code 

will start with discretization of the problem geometry. So, first, we will discuss how  to discretize 

a 1-dimensional geometry. In the above slide you can see, the first two lines in the code are clc 

and clear.  

What is the use of these two lines? You will be using this scientific computing software very often. 

Data of some previous code may be saved in the console and that has to be erased. Otherwise, if 

the variable of the previous code and the present are common, they may interfere with each other 

and that may give you some errors in the results. That is why at the start of every code, you have 

to add these 2 statements (clc and clear) which will make your results safe. 



 

 

The next step is discretization. A 1-dimensional geometry  is a straight line and can be divided into 

segments. They are defined by its starting and ending nodes. So, the discretization of a one-

dimensional domain involves nodes and segments.   

One more point is that the algorithm that we are discussing in this lecture is not the only way to 

develop the code for this problem. In a number of ways one can develop the code for a problem. 

The procedure that we are going to discuss in this lecture is one way to code. Here, we start with 

discretization by defining n = 11, where 𝑛 is the number of nodes. While discretizing the 1-

dimensional domain, you can start with either defining number of segments or number of nodes. 

These two algorithms  will be different. Here, we are considering the algorithm which starts with 

choosing the number of nodes.  

The 11 nodes will discretize the 1-dimensional geometry into 10 segments. In 1-dimensional 

geometry which is a straight line, if you have n number of nodes, they will divide the geometry 

into 𝑛 − 1 segments. In the previous lecture also, you can recall that there were 4 nodes and 

number of elements were 3 and this is a simple logic.  

Once you define the number of nodes, that will automatically defines the number of segments. So 

the number of segments will be 𝑛 − 1. So, for a 1D geometry , this is how the discretization will 

be done. And then, we are defining the global coefficient matrices as given below 
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In the matrix equation, which is shown in the above slide of the previous lecture, there are 3 

matrices, A, D, B. So now our job is to fill these matrices. These 3 matrices are defined as given 

in the above lines. 

(Refer Slide Time: 04:05) 

 

 We are defining A = zeros(n,n), (n,n) defines the dimension of the matrix and zeros will make the 

matrix as 0 completely. Now that matrix will be updated with the entries of element coefficient 

matrices. As we have seen in the previous lecture, the size of of A and D matrices will be 𝑛 × 𝑛. 

That is why we have used (n,n) while defining A matrix. In case of the source matrix (B), it is 



 

 

defined with (n,1), also you can correlate these matrices directly with previous lecture’s matrices. 

Next step in the code is finding the coordinates of the nodes in the discretized domain which is as 

shown in the following figure.  

 

The nodes of the discretized domain and their positions are indicated in the above figure. Now the 

question is how to calculate these positions. In this example, we are choosing the coordinates or 

the points to be equispaced as shown in the above figure because this will simplify the 

discretization procedure. You can also choose nodes that are non equispaced with more number of 

nodes at the starting region and end region and less number of nodes in the middle region of the 

domain. But that will complicate the part of your code that involves choosing coordinates.  

That is why, for simplicity, equispaced nodes are chosen. Let us say in this case for n = 11, the 

command x = 0:1/n:1 will divide the domain and give the points in between 0 and 1, with a step 

size of 1/(n-1).  This command will result in to a row matrix x whose entries are starting from 0 to 

1 with a step size of 0.1 for the present discretization with 11 nodes. 
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Now once we determined the details of nodes and their positions, we need to know how these 

nodes are connected. In the case of a 1-dimensional domain, it is obvious that they are connected 



 

 

by a straight line. But in the case of 2D, it will be difficult so that is why we frame a 𝑡 matrix. In 

the present 1D problem also we are using it to make you familiar about 𝑡 matrix.  

𝑡 matrix is called as connectivity matrix and it contains information about how each node is 

connected to other nodes. So you can see the discretized domain in the following figure. The 

numbers which are encircled in the figure are element numbers.  

 

For element number 1, the starting node is 1 and the ending node is 2,  for the second element, the 

starting node is 2 and the ending node is 3 and for the third element, the starting node is 3, and the 

ending node is 4. What is the common thing here? The element number is same as its starting node 

number. This information will simplify steps involved in the code.  

So, assigning the element number of each element to its starting node number and the ending 

number is its element number plus 1. That is what we have coded using the following for loop in 

the above slide. As shown in the above slide in the t matrix for each element, the starting node 

number is its element number which is denoted by 𝑖.   

The ending node number is 1 plus  the corresponding element number. So, with the for loop in the 

above slide, for every i (element number), we will get the starting node number of the element in 

the first row. The definitions of matrices in Scilab and MATLAB are same in both software.  The 

first index of a matrix is row number and the second index is column number. In the code, i in the 

t matrix is going to the column number. That means element number is nothing but the column 

number of the t matrix. And the first row will denote the starting node number and the second row 

will indicate the ending node number which is 1 plus element number.   

Now, why this matrix is called a connectivity matrix? Where is the connectivity information stored 

in this matrix? You can understand this from the matrix that is formed using the following code. 



 

 

 

For a 1D geometry, if you run the for loop in the above figure, we will get the t matrix like the one 

shown in the above figure, where its column numbers are element numbers, the first row is the 

starting node number and the second row is the ending node number of the element.  

The entries in the t matrix are 1, 2 in the first column, 2, 3 in the second column, 3, 4 in the fourth 

column, etc. Now, by looking at the matrix which is in the above figure, we can know the 

connectivity. How? The ending node of the first element is the starting node of the second element. 

So, through the second node, the first and second elements are connected. Similarly, through the 

third node, the second and third elements are connected, and so on. Such information is stored in 

the t matrix . 

The t matrix plays a very important role in converting element coefficient matrices to the global 

coefficient matrix. We will be using this matrix very often. So, we need to know each and every 

part of the connectivity matrix (𝑡). And another point to be highlighted is that the first row indicates 

the local node number 1 and the second row indicates the local node number 2.  

That means, for element 1, local node number 1 is global node 1, local node number 2 is global 

node 2. Similarly, for element 2, the local node number 1 is global node 2, and local node number 

2 is global node 3. The first row of 𝑡 matrix indicates the first local node number of each element 

and the second row of t matrix indicates the second local node of all elements. 
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We have completed the discretization part of the code which is the first step. Now the second step 

is the formation of local coefficient matrices. In the previous lecture also, we have seen that the 

local coefficient of matrices of every element are calculated individually. Since there are only 3 

matrices (for 3 elements), we wrote them side by side on a single slide.   

Let us consider that we have 100 elements in a problem domain, then we will have to calculate 

100 local coefficient matrices. That means what? From the coding point of view, you need to 

define 100 variables to store those 100 matrices. This is a very difficult task and you cannot 

develop a generalized code also. If we want to use 1000 matrices, then we have to change the 

complete code for 1000 variables, which is a very difficult task.   

Generally we know about the matrices with rows and columns, with only rows, and with only 

columns. Along with this, in both Scilab and MATLAB, we can define 3-dimensional matrices.  

That means we can define 𝑛 number of 2 × 2 matrices and we can stack them one after the other 

in a single variable.  

That is how we can store all the element coefficient matrices in a single variable. So that even 

though if you change the number of elements, then the number of variables in the code will not 

change. And this logic is same in the case of 1D and 2D problems. So, in the FEM code for 2-

dimensional problems also, we can see the same 3-dimensional matrices. The 3-dimensional 

matrix will be as shown in the following figure.  



 

 

 

The local coefficient matrix of element 1 will be stored in the first matrix like the way shown in 

the above figure, after that element 2 matrix will be stored and  then element 3 matrix will be 

stored, like this all the matrices will be stacked in a single variable. 

Going further we will see how these element coefficient matrices are formed and how they are 

stored. The formula for element coefficient matrix that we have seen in the previous lecture is 

given below. 

a =
1

𝑙
[

1 −1
−1 1

] 

By looking at the above expression, we have to first identify all the common things in it. 

Identification of such things will make your code simpler. So, in the above expression, what are 

common? The diagonal entries of matrix are 
1

𝑙
 and its off-diagonal entries are −

1
𝑙
.  In the present 

problem, the complete matrix is constant, only thing you need to calculate is 𝑙 for each segment. 

Since we have chosen equispaced discretization, this 𝑙 is also constant.  

But if you change the discretization to non-equispaced, then 𝑙 will be a variable. So, to make the 

code more general, we have used 𝑙 as a variable defined with the following command.  

 

This length will be calculated automatically for every element. Now we need to get the geometrical 

details of the element under consideration. Here, geometrical details are nothing but the 

coordinates of each node. 

 We have to get x coordinates of the 2 nodes of each element. For the first element, local node 

number 1 is global node 1 and local node number 2 is global node 2. This we have seen in the 

explanation for 𝑡 matrix. The first row of 𝑡 matrix indicates the local node number 1 and the second 

row indicates the local node number 2.  



 

 

Here, t(1, element)  will be 1 and t(2, element) will be 2 for the first element. And in the following 

part of the code x(1) is nothing but 0, x(2) will be 0.1 for element 1. The following lines of the 

code will give the coordinates of the nodes for different elements.  

 

From this part of the code, we are getting the coordinates of each node of an element using the 

connectivity matrix (𝑡) information. The 𝑡 matrix information will give the global node number of 

each local node. The above part of the code will give the coordinates and then we are calculating 

the length of each element using L = abs(xn(2)-xn(1)) and abs gives the absolute value of the 

difference.  

For each element of this problem, the coordinate of the second node is greater than the first node. 

The difference of the coordinates will give a positive value only. If someone start naming the nodes 

in elements from higher coordinate to lower coordinate, like if  we choose starting node as 2 and 

ending node as 1, then the difference of the coordinates will be negative. To avoid this problem, 

we have used abs.  

The difference will give always a positive value, because length should be a positive number. Now, 

we calculated the length of each element. Only thing left out is to calculate element coefficient 

matrix. One more basic thing that we want to highlight here is, if you want to form a matrix with 

rows and columns then we need to use 2 for loops. One for loop is for rows, second for loop is for 

columns. Also, if you want to form a row vector or column vector then you need only 1 for loop.  

Since this element coefficient matrix is a 2-dimensional matrix, we are using 2 for loops which are 

given below.  

 



 

 

The 𝑖 in the first for loop indicates rows and j in the second for loop indicates columns. If 𝑖 = 𝑗 

then, a(element,i,j) is 
1

𝑙
, else it is equal to −

1
𝑙
. Here we want to highlight the first difference 

between Scilab and MATLAB.  

In MATLAB, ‘then’ in the if statement is not required. But in Scilab, we need to add ‘then’. This 

is one of the differences that we want to highlight. In the present code, this is the only difference. 

When you use this code in MATLAB, you have to delete this ‘then’.  So with this we have formed 

the element coefficient matrices in a single variable, which is a 3-dimensional matrix with all the 

element coefficient matrices are stacked one after the other.  
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2 × 2 matrices with constant entries can be entered directly in a matrix form as given below. 

 

In this representation, if you enter the numbers in a row one after the other, then the entries will 

go in a row. To change the row number, you have to keep a semicolon and that will go to the 

second row. If the matrix is simple with constant entries then you can use this way.  

In the entire FEM procedure, either it is 2D or 1D, the D matrix will be a constant matrix with 

constant numbers. That is why in both 2D and 1D FEM formulations, we will enter the element 

level D matrices using this representation. So, we have completed the formation of element level 



 

 

D matrix. Now we will form the element level source matrix. As as we have seen in the previous 

lecture, expressions for the entries of the element level b-matrix are given below .  

𝑏(𝑒) =

[
 
 
 
 
1

𝑙
[
𝑥2(𝑥2

2 − 𝑥1
2)

2
−

(𝑥2
3 − 𝑥1

3)

3
]

1

𝑙
[
(𝑥2

3 − 𝑥1
3)

3
−

𝑥1(𝑥2
2 − 𝑥1

2)

2
]
]
 
 
 
 

 

The entry in the first row of the above matrix corresponds to local node number 1 and the entry in 

the second row corresponds to local node number 2. Here we can see that these expressions are 

little complicated and they are different for different nodes.   

That is why we are entering these entries separately one after the other as given in the following 

lines of the code.  

 

 Here, we want to highlight that if your functions are common for all the nodes, then you can use 

for loops to form the matrix. Otherwise, you have to enter one after the other like the way shown 

in the above lines of the code. This is the third way of entering and it will be used if you have a 

complicated function in x and y.  

As we have discussed earlier, the element level 𝑏 matrix is a 2 × 1 or a 1 × 2 matrix as shown in 

the above expresssion. To store all these element level source matrices in a single variable, we can 

use a rectangular matrix. Here we are using a rectangular matrix which is given below.  

𝑏 =

[
 
 
 
 
 𝑏1

(1)
𝑏2

(1)

𝑏1
(2)

𝑏2
(2)

𝑏1
(3)

𝑏2
(3)

.

. ]
 
 
 
 
 

 

In each row of the above matrix, we are entering the element level 𝑏 matrices. The first row of this 

matrix corresponds to the first element and  the row index corresponds to element number. When 

element number is 1 that will correspond to the first row and the local node number corresponds 

to the column number.  



 

 

The element number 2 will correspond to the second row of the above matrix and the local node 

number 1 entry will be in the first column. Like this, we will completely enter the information of 

element level b-matrices in a single matrix (or variable) which is a rectangular matrix.  

Here the first row corresponds to the first element and the element index is indicated in the 

superscript of matrix entries in the above expression, the second row corresponds to the second 

element, the third row corresponds to the third element. The first column of the matrix corresponds 

to the first local node and the second row corresponds to the second local node. Like this, we will 

enter the element level b-matrices.  

Till now, we have completed the formation of element level coefficient matrices and we have 

completed the second step. Now we will go to the third step, which is the formation of global 

coefficient matrix using corresponding element coefficient matrices. Till now, we have 𝑛 − 1 

element level coefficient matrices and now we will combine all the element coefficient matrices 

into a single global coefficient matrix.  
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In this slide, the global level matrix is formed from the element coefficient matrices using the 

connectivity matrix (𝑡). Remember that for each element (column of t matrix), the first row of the 

connectivity matrix corresponds to the local node number 1 and the second row of the connectivity 

matrix corresponds to the local node number 2.   



 

 

As mentioned earlier, we will do element-wise operations in FEM. The for loop in the above slide 

starts from element 1 to 𝑛 − 1. Then we are taking the global node numbers of each element using 

the following syntax. The size of nodes defined in the following statement will be 2 × 1. 

 

The first row of the nodes matrix corresponds to local node number 1 and the second row 

corresponds to local node number 2.  The entries of the nodes matrix for element 1 will be 1, 2. In 

case of element 2, they will be 2, 3.  It means the local node number 1 of element 1 is global node 

1, local node number 2 of element 1 is global node 2. For element 1, it may be confusing. We will 

consider element 2. The local node number of 1 of element 2 is global node 2, local node number 

2 of element 2 is global node 3.  

(Refer Slide Time: 24:14) 

 

If you see in the above slide (the very first slide), we have defined 3 matrices A, D, and B. Now 

we have to update these three matrices with the entries of element coefficient matrices that we 

have already formed. 
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The corresponding global node numbers of each local node are stored in the nodes matrix, using 

this we will take the entries corresponding to each element level matrix and update the 

corresponding position in the global matrix. 

(Refer Slide Time: 24:44) 

 

Since the element coefficient matrices are 2-dimensional, we are using 2 for loops which are shown 

in the above slide. In these two for loops, we are running from i = 1 to 2 and j = 1 to 2. If it is a 2-

dimensional FE analysis which uses triangular elements with 3 nodes, then the for loops will run 

from  i = 1 to 3 and j = 1 to 3. This we will see in later lectures.  



 

 

Now, we will see the formation of global coefficient matrix for the A-matrix. A(nodes(i), nodes(j)) 

is getting updated using the following syntax 

 

A variable will be updated, if we are adding it with some other number. For example,  𝑥 = 𝑥 +

𝑥1 will update 𝑥 with 𝑥1.  

In the above syntax, A(nodes(i), nodes(j)) is present on both sides. In this we are adding 

A(nodes(i), nodes(j)) with a(element, i,j) and we are assigning the result to A(nodes(i), nodes(j)).  

This means we are updating A(nodes(i), nodes(j)).  This statement means that we are updating the 

nodes(i), nodes(j) in global matrix with a(element, i,j). This operation will be explained here.  

For element 2, local node number 1 is global node 2 and local node number 2 is global node 3. 

The entires of nodes that correspond to element 2 will be updated as shown in the following figure. 

 

So, nodes matrix is equal to 2 and 3. The first step that we will be running for element 2 is for i = 

1 and j = 1, A(2,2) that means A(nodes(1),nodes(2)). Here, nodes(i=1) is 2 and nodes(j=1) is 2. 

So, (2,2) position of global coefficient matrix A (A(2,2)) is getting updated with the entry in (1,1) 

position of element level coefficient matrix of the second element (a(2,1,1)) as given in the 

following syntax.   

 



 

 

In the above figure, we have written 𝐴(2,2) ≠ 0, because this position of A matrix got updated in 

element 1.  

Here, we are updating the positions in the global coefficient matrix with the corresponding local 

matrix entries. Now, for i = 1 and j = 2, nodes(i) is 2, nodes(j)  is 3. So, for this  (2,3) position of 

A matrix is getting updated with (1,2) position of element level matrix of second element. Similarly 

for i = 2 and j = 3.  

Like this, we will be updating the A matrix. A similar procedure will be followed for D matrix as 

well. This part will be there in every code to convert local coefficient matrices into the global 

coefficient matrix. Only thing is, here the numbers in for loops will change as 1 to 3. So, using this 

code we have formed A and D matrices from the corresponding local coefficient matrices.   

Now we will see how to form B matrix (source matrix). The element level 𝑏 matrix will be like 

the one shown below.   

𝑏 = [
1,1 1,2
2,1 2,2
3,1 3,2

] 

For element 2, global nodes will be 2, 3. For i = 1, we are at local node 1. So local node 1 of 

element level B matrix will be 𝑏(2,1). Here 2 (row number of b matrix) represents the element 

number. Global B matrix will be updated as given by the following equation 

 

In the above operation, the entry that corresponds to local node 1 of element 2 will be added to 

global entry 2. Here you can observe that the complexity has reduced by 1. Because source matrix 

is a 1-dimensional matrix. That is why here we have only one for loop. Similarly for for i = 2, the 

global node number is 3. The third position in the global matrix is getting updated with the entry 

of second local node of element 2.  

The third position of global matrix B is getting updated with the second entry local coefficient 

matrix of element 2 (𝑏(2,2)). This is how we will convert the source matrix. The following 3 steps 



 

 

inside these for loops will convert our element level coefficient matrices into global coefficient 

matrices.  

 

 

Then, once we formed the global coefficient matrices, the next step is simplifying these matrices 

and solving the final matrix equation.  
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Till now we calculated the global A, D, and B matrices. In the previous lecture we have reduced 

𝐴𝑈 − 𝐷𝑈 = 𝐵 to (𝐴 − 𝐷)𝑈 = 𝐵 by taking 𝑈 as common and considering  𝐾 = 𝐴 − 𝐷. So we will 

be solving 𝐾𝑈 = 𝐵, after imposing boundary conditions.  

In the previous lecture, by imposing boundary conditions we have reduced the dimension of 

matrices from 4 × 4 to 2 × 2. Also, those boundary nodes are the first node and the last node. But 

in case of complicated geometries and systems, we do not even know the node numbers for which 

the boundary conditions need to be applied. Also, it will be very difficult to do such simplifications 

to the matrices. In that case, we will make all the entries as 0 for the row that corresponds to a 

boundary node and then we will make its diagonal entry as 1. This operation will impose the 



 

 

boundary conditions. For the first and nth nodes, we are applying boundary conditions using the 

following lines of the code. 

 

In the above lines, for the first row, we are making all the entries as 0 using K(1,:) = zeros(1,n).  

Then we are  assigning 1 to its diagonal entry using K(1,1) = 1.  As boundary condition is  𝑈 = 0, 

we are updating the B matrix entry of the first node as 0. Similarly for nth row that corresponds to 

the nth node, we are making the nth row completely as 0 and we are assigning 1 to its diagonal 

entry. We are imposing the boundary condition value in the B matrix. This can be visualized using 

the following example.  

 

We have seen the above example in the previous lecture. The 4 × 4 matrix which is on the left 

hand side is converted into the following 2 × 2 matrix.  

[
2 −1

−1 2
] 

This 2 × 2 matrix is a part of the complete K matrix. In the matrix equation on the right hand side, 

the first row is completely assigned as zeros and 1 is assigned to its diagonal entry.  

Similarly, for the nth row, we are making the complete row as 0 and 1 is assigned to its diagonal 

entry. Multiplying the modified K matrix with B matrix will give 𝑈1 = 0 and 𝑈4 =0. That means 

in this modified system of matrices, you have imposed the required boundary conditions 𝑈1 = 0 

and 𝑈4 = 0.  You can visualize the correlation between this method with the method of reducing 

the dimensions of K matrix by performing some matrix operations.   



 

 

If we perform the operation, row 2 is equal to row 2 plus row 1,  then the matrix equation will be 

modified as.  

1

2 2

3 3

4

1 0 0 0 0

0 2 1 01

0 1 2 1

0 0 0 1 0

U

U B
KU

U Bl

U

    
    

−
    = =
    − −
    

    

 

 And then making row 3 is equal to row 3 plus row 4, the above matrix is updated as:  

1

2 2

3 3

4

1 0 0 0 0

0 2 1 01

0 1 2 0

0 0 0 1 0

U

U B
KU

U Bl

U

    
    

−
    = =
    −
    

    

 

That means, the second and third rows become independent and this is similar to the matrix 

equation that we have seen in the previous lecture.  

This is how you can visualize similarity between the present way of imposing boundary condition  

and the one that we have seen in the previous lecture. Also, note that the procedure of making the 

row corresponding to that node as 0 and assigning 1 to its diagonal entry will be followed in the 

2D code as well. Also, since we have only 2 nodes, we have done this operation separately to the 

two nodes. When we have many nodes, we will use a for loop for this operation also. Now, we 

have imposed the boundary conditions also and we are ready to take the inverse and solve the 

matrix equation. 
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We will calculate the nodal potentials by using the command U = K\B. Taking inverse of a matrix 

by using backstroke is there in all scientific computing software like MATLAB and Scilab. You 

can directly use U = K\B in both the platforms. Then by using plot(x,U), you will get the variation. 

The red colour curve which is shown in the figure corresponds to results of 1D FEM code.  

Since we have chosen less number of elements (10 elements), there is an error at points between 

nodes, because in FEM we are minimizing the energy at nodes unlike in the whole domain 

approach.  

Now, in the above figure we have compared the computed results with the exact solution which is 

in blue color and the black curve is the approximated solution with second-order approximation 

which we have seen in the previous lecture. As you know these curves are the solutions for the 1-

dimensional PDE 𝜙′′ + 𝜙 + 𝑥 = 0, with boundary conditions 𝜙 = 0 at 𝑥 = 0 and 𝑥 = 1.  

In the figure, you can see that at 𝑥 = 0 and 𝑥 =1, the boundary conditions are imposed perfectly. 

The exact solution is given below.  

𝜙 =
𝑠𝑖𝑛( 𝑥)

𝑠𝑖𝑛( 1)
− 𝑥 



 

 

This solution and the approximate solution �̃� =
5

18
[𝑥 − 𝑥2]  with second order approximation, we 

have seen in the previous lecture. Also, in whole domain approximation to improve the accuracy, 

we have increased the approximation from second order to third order.  

That made us to redo the complete process which involves complicated calculations compared to 

the calculations for second-order approximation. As we keep on increasing the order, the 

complexities in the calculations will increase. Also, it is not a general procedure, whereas the code 

that we have developed is generalized. Here the results for 10 elements are shown. 
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Now in the code, we will change the number of elements by changing the very first line of the 

code (n = 11).  The accuracy of the result will be improved without any further changes in the 

code. First we will change n = 11 to n = 21 and then n = 31 without touching any steps in the code 

to improve the accuracy. So what we are trying to say is, this kind of FEM code will be general 

and only thing you need to change is its discretization. The improvement in accuracy is shown 

below.  
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This is the code in Scilab interface which we have seen in the presentation. In this code, we will 

be changing only the value assigned to variable n. Now running the code for n = 11 will give the 

result in the following figure. 

 

So you can see that solution in red colour is very much approximate and the error is more.  
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Now changing n = 21, you can see both solutions got overlapped with little error as shown in the 

following figure. 
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Now we are increasing n to 31 and it got almost overlapped. The complexity in computation is 

also reduced. We have wrote the code for 11 elements and then we got solutions for different 

number of nodes. Using the code, we can get the solution for 1000 also. 
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With this in the above figure, the solution got overlapped. In the figure, you cannot see that red 

line and the blue line is overlapping that red line. 



 

 

 

You can see red line if we zoom in the figure too much. So, if you develop a code, you can make 

it more general and it will help you in improving the accuracy of computations. Thank you. 
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