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In the 14th lecture, we saw finite element procedure through the discretization method and there 

we saw how  to calculate the energy associated with the entire problem domain. In that lecture, 

we had taken a 3 element example with 4 nodes and we calculated energy stored in the problem 

domain and then we also saw properties of shape functions.  

Now if you look at the procedure that we followed for calculating the energy, it was not 

amenable for coding particularly in 2D or 3D, because we calculated energy for the entire 

domain at once by evaluating the functional integral over the whole domain as given below.  

𝐹 =
1

2
∫ [𝑁1

′𝜙1 + 𝑁2
′𝜙2 + 𝑁3

′𝜙3 + 𝑁4
′𝜙4]

2𝑑𝑥 −∫ [𝑁1𝜙1 +  …+ 𝑁4𝜙4]ℎ 𝑑𝑥 
3𝑙

0

3𝑙

0

 

In the above expression, we are integrating from 0 to 3l (total length of the domain) and then 

depending upon the values of shape function in each element, we have simplified the above 

equation by either taking some terms or not taking some terms. But this procedure is not good 

from the point of view of coding. 

From the coding point of view, it will be easy if we calculate energy element-wise and form 

the element coefficient matrices and then combine them to form global coefficient matrix. It is 

similar to the thing that we saw in the previous lecture where we are calculated the total energy 

at once, but here we are first calculating the element coefficient matrices because we are 

calculating the energy of each element separately by using the contributions of shape functions 

and potentials associated with the element. Then we combine the element coefficient matrices 

to form the global coefficient matrix. That is what we will do in this lecture.  
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In this slide, we are taking only the first element of a problem domain with n elements, which 

is as shown below. 

 

 Now, we will calculate only energy associated with this first element. So, we have taken the 

limits of the integral as 0 to l in the following equation. 

𝐹(1) =
1

2
∫ [(𝑁1

(1)
)
′

 𝜙1 + (𝑁2
(1)
)
′

 𝜙2]
2𝑙

0

𝑑𝑥 −∫ [𝑁1
(1)
𝜙1 + 𝑁2

(1)
𝜙2]ℎ 𝑑𝑥

𝑙

0

 

We know that the above equation is energy functional and we have seen in the previous lecture 

that 𝜙 for this first element will be simply 𝑁1𝜙1 +𝑁2𝜙2 because 𝑁3 and 𝑁4 are 0 for element 

1. So then the functional expression for this element will have (𝑁1
(1)
)
′

 𝜙1 + (𝑁2
(1)
)
′

 𝜙2 and 

𝑁1
(1)
𝜙1 + 𝑁2

(1)
𝜙2 as integrands. Also last time, we discussed that derivative will be valid only 

for shape functions. Because they are functions of x and 𝜙1 and 𝜙2 are not functions of x in the 

variational procedure. In this approach, we are varying the values of 𝜙 at every x.  In the second 

integral of the above equation, h stands for the source term. The entries of the element level 

matrices are formed by using the same procedure. So then we will get the values of entries 𝑎11 

and 𝑎22 of element 1 as 
1

𝑙
. In the previous case, when we calculate 𝑎22 for node 2, we got the 



value as 
2

𝑙
 because that node 2 was common to both elements 1 and 2. But here since we are 

calculating only for the first element, the value of 𝑎22 will be only 
1

𝑙
.  

When we take the second element, node 2 will correspond to node number 1 (local node 1) of 

that second element. So in the second element also, it will be  
1

𝑙
. And the 

1

𝑙
 of node 2 in the 

first element and 
1

𝑙
  in the second element will get added to get 

2

𝑙
 and that will be the total 

contribution of node 2.   

For the first element 𝑎22 is only 
1

𝑙
 because the other contribution of potential at node 2 in the 

second element is yet to be accounted for. That will be accounted when we consider the second 

element. But this makes it very simple, if you go element-wise when you develop a code. So, 

first you consider an element and then set up a do loop and go element-wise. In the code, first 

you calculate element coefficient matrix and later on, you form the global coefficient matrix. 

So how do we do that, that we will see. The values of 𝑎12 and 𝑎21 will remain same as −
1

𝑙
 

which we have seen earlier. So the 4 terms of the element coefficient matrix are given below. 

𝑎11
(1) = 𝑎22

(1) =
1

𝑙
,  𝑎12

(1) = 𝑎21
(1) = −

1

𝑙
 

The entries of element level source matrix 𝑏1 and b2 will be as given below. 

𝑏1
(1) = 𝑏2

(1) =
ℎ𝑙

2
 

Similarly, the entries of matrices for element 2 are given below 

⇒ 𝑎22
(2) = 𝑎33

(2) =
1

𝑙
,  𝑎23

(2) = 𝑎32
(2) = −

1

𝑙
⇒ 4 terms   and   𝑏2

(2) = 𝑏3
(2) =

ℎ𝑙

2
⇒ 2 terms  

For element 2, local node 1 will be node 2 and local node 2 will be node 3. Also the expression 

for element 2 is 

𝐹(2) =
1

2
∫ [(𝑁2

(2)
)
′

𝜙2 + (𝑁3
(2)
)
′

𝜙3]
22𝑙

𝑙

𝑑𝑥 −∫ [𝑁2
(2)𝜙2 +𝑁3

(2)𝜙3]ℎ 𝑑𝑥
2𝑙

𝑙
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Now, we go further and then similarly for element 3 the entries of matrices are given below.  

𝑎33
(3) = 𝑎44

(3) =
1

𝑙
,  𝑎34

(3) = 𝑎43
(3) = −

1

𝑙
⇒ 4 terms, 𝑏3

(3) = 𝑏4
(3) =

ℎ𝑙

2
 

All the element coefficient matrices are identical in this case which is an advantage. And it 

becomes very simple to code. So the 3 element coefficient matrices and source matrices are 

given below. 

 

So, we have to combine element coefficient matrices to form the global coefficient matrix. This 

step will actually add the energies of all the elements and the contributions of the nodal 

potentials will automatically get added. In the present problem, you have the 3 element 

coefficient matrices which are given below. 

 

Here, 
1

𝑙
 is not considered because that is common in these 3 matrices. Now, in the above 

matrices, what are written in brackets are the global node numbers. Because in the first matrix 

that corresponds to element 1 is between nodes 1 and 2 so (1), (2) are indicated in that matrix, 



element number 2 is between 2 and 3 and element number 3 is between 3 and 4. Then you can 

see that in element number 1, you have 𝑎22, for element number 3, 𝑎22 is not there. 

We add 𝑎22 of element 1 and 𝑎22 of element 2 to get overall energy as just a number because 

it is a scalar quantity. The contributions of all elements will get added to give only one number 

as energy. So all these terms will get added which means you have to collect terms with the 

same coefficient (which are indicated with blue circles). That is why this gets added and the 

contribution of node 2 becomes 2 (2nd diagonal entry) in the global coefficient matrix as given 

below. 

 

Whereas the contribution of node 1 (1st diagonal entry of global matrix which is on the left 

hand side) remains 1 because 𝑎11 appears only in the matrix that corresponds to element 1. 

Similarly, a33 appears in the matrices that correspond to elements 2 and 3, so that gives 2 in the 

global coefficient matrix, 𝑎44 appears once in element 3 that is why you get 1 in the global 

matrix and then your off-diagonal elements will remain as that in element coefficient matrices.   

This is how we have formed the global coefficient matrix which is same as the one we have 

seen in the previous lecture.  But it was not so easy if we use whole domain approximation. If 

we go element-wise, it becomes very easy. So while coding, you have to set up a do loop and 

calculate the element coefficient matrices element wise and then combine them to calculate the 

global coefficient matrix.  

Later on, when we see an FE code, we will see how easy it is, so just wait till that time. In fact 

after this discussion, we are going to show you an FE code written in Scilab and this will make 

things more clear. Similarly, the b matrix which represents source will be added to form its 

global level matrix as given below. 

 



The 3 b matrices are added as shown above. Again, hl is not considered here because it is 

common. 𝑏2 is in elements 2 and 3 and 𝑏3 is in elements 3 and 4. So 0.5 in each of the two 

matrices are added to give 1. The contribution becomes 1 for node numbers 2 and 3, because 

nodes 2 and 3 are common and that is how you get the global 𝑏 matrix as shown in the left 

hand side of the above figure.   
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Till now this procedure was to solve Poisson’s equation using FEM. Now we will see the 

procedure to solve the following non-homogenous 1D wave equation that we have seen in the 

previous lectures.  

𝛁2∅ + ∅ + 𝑥 = 0  

Compared to Poisson’s equation in non-homogenous wave equation, you have an extra 𝜙 term 

and x represents the source. Earlier we were calling h as the source term. In the previous 

example, h was constant that means everywhere in the domain the source is same.  

Now in the present example, the source is a function of x and it is not constant over the entire 

domain. After applying FEM procedure, the expression of the functional for the above 

differential equation in terms of global matrices is given below. 

𝐹 =
1

2
[∅𝑇𝐴∅ − ∅𝑇𝐷∅] − 𝐵∅ 

After minimizing the above functional, the final system of linear equations is given below. 



𝐴∅ − 𝐷∅ = 𝐵 

 In whole domain approximation, the final matrix equation is 𝐴𝐶 − 𝐷𝐶 = 𝐵  where the entries 

of C are the unknown coefficients in that polynomial expression.  

Here we have gone from the whole domain approximation to elemental level approach. So  the 

coefficients (𝐶) are replaced by the potentials (𝜙) at nodes. So, that is why the final matrix 

equation becomes  

𝐴∅ − 𝐷∅ = 𝐵 

 In the above equation, 𝐴 matrix is already evaluated in the previous lecture because ∇2𝜙 is the 

same whether it is in wave equation or in Poisson’s equation or even in Laplace’s equation. 

When you follow the FEM procedure, ∇2𝜙 term will result into the same global coefficient 

matrix if the geometry and material properties are the same. So what is the new thing that we 

need to form is the matrix corresponding to 𝜙 term because we have already worked out the 

∇2𝜙 term that is the 𝐴 matrix in the previous 2-3 slides.   

Now we have to worry about this 𝜙 term and then about x because earlier the source was 

constant and it was not varying with x. But now the source is a function of x. So now how do 

we form the D matrix? In the functional, the extra term that corresponds to 𝜙 term (D matrix) 

is 
1

2
𝜙2𝑑𝑥. Remember, this term for the functional can be written by taking the 𝜙 term to the 

right hand side, then you multiply by 𝜙 and it is then multiplied by 
1

2
.   

Now this 𝜙2 for element 1 is replaced by (𝑁1𝜙1 + 𝑁2𝜙2)
2 of that element. So we have to just 

evaluate the following integral.  

1

2
∅𝑇𝐷𝑒∅ =

1

2
∫ ∅2𝑑𝑥
𝑙

0

=  
1

2
∫(
𝑥2 − 𝑥

𝑙
∅1 +

𝑥 − 𝑥1
𝑙

∅2)
2

𝑑𝑥

𝑙

0

 

So if you expand the square in the integrand, we will get the following equation.  

1

2
∫ ∅2𝑑𝑥
𝑙

0

=
1

2
∫((

𝑥2 − 𝑥

𝑙
)
2

∅1
2 + (

𝑥 − 𝑥1
𝑙
)
2

∅2
2 + 2∅1∅2 (

𝑥2 − 𝑥

𝑙
) (
𝑥 − 𝑥1
𝑙
)) 𝑑𝑥

𝑙

0

=
1

2
[∅1 ∅2] [

𝑑11 𝑑12
𝑑21 𝑑22

] [
∅1
∅2
] 



This integral expression can be further elegantly written in the matrix form. Now we will see 

the expressions of entries of these matrices.   
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The above integral is rewritten below with one change: instead of 2𝜙1𝜙2 we have to just split 

that into 2 terms as 𝜙1𝜙2 + 𝜙1𝜙2.   

1

2
[∅1 ∅2] [

𝑑11 𝑑12
𝑑21 𝑑22

] [
∅1
∅2
] 

=
1

2
∫(

(
𝑥2 − 𝑥

𝑙
)
2

∅1
2 + (

𝑥 − 𝑥1
𝑙
)
2

∅2
2 + ∅1∅2 (

𝑥2 − 𝑥

𝑙
) (
𝑥 − 𝑥1
𝑙
)

+∅1∅2 (
𝑥2 − 𝑥

𝑙
) (
𝑥 − 𝑥1
𝑙
)

)𝑑𝑥

𝑙

0

 

The 𝑑12 entry in the above matrix equation is given by the following expression.  

𝑑12 = ∫(
𝑥2 − 𝑥

𝑙
) (
𝑥 − 𝑥1
𝑙
) 𝑑𝑥

𝑙

0

=
𝑙

6
 

So, it is obvious because if you expand the above matrix expression, you can easily correlate 

that the off diagonal term 𝑑12 will be the above integral. Now if you evaluate this integral, you 

will get the value of 𝑑12 as 
𝑙

6
 . Off diagonal terms for various elements are 𝑑12, 𝑑21 for element 

1, 𝑑32, 𝑑23 for element 2, and 𝑑34, 𝑑43 for element 3. The diagonal terms for example, 𝑑11 will 

be given by this following expression. 



𝑑11 = ∫(
𝑥2 − 𝑥

𝑙
)
2

𝑑𝑥

𝑙

0

=
𝑙

3
 

If we evaluate the above integral, its value will be equal to 
𝑙

3
. And if you evaluate it for various 

elements then you will get 𝑑11 and 𝑑22 for element 1, 𝑑22 and 𝑑33 for element 2, and 𝑑33 and 

𝑑44 for element 3. Remember that this is a 3 element example with 4 nodes. Thus the element 

level D matrix will be as given below.  

[𝐷]𝑒 =
𝑙

6
[
2 1
1 2

] 
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Now let us again go back to the following expression that we saw in the previous slide.  

1

2
[∅1 ∅2] [

𝑑11 𝑑12
𝑑21 𝑑22

] [
∅1
∅2
] =

1

2
[𝑑11∅1

2 + 𝑑22∅2
2 + 𝑑12∅1∅2 + 𝑑21∅1∅2] 

This whole expression involving the product of 3 matrices can be expanded to give the 

expression on right hand side. Now, these 4 terms are split as given below.  

1

2
[∅1 ∅2] [

𝑑11 𝑑12
𝑑21 𝑑22

] [
∅1
∅2
] =

1

2
𝑑11∅1

2 +
1

2
𝑑22∅2

2 +
1

2
𝑑12∅1∅2 +

1

2
𝑑21∅1∅2 

Remember the above expression is a part of the functional expression and it corresponds to 

element number 1. So this is representing the part of energy of element 1 and split into 4 terms 

as shown in the above expression. Now in the process of FEM method we are  minimizing the 

energy. Then we will have to differentiate the above energy term with respect to 𝜙1. If you 

differentiate this with 𝜙1, you will get the following expression since 𝑑12 = 𝑑21 

 

Similarly, differentiating the energy term with respect to 𝜙2, you will get the following 

expression. 

 



Combining these two expressions, after minimization of this whole term involving 3 matrices 

it will reduce to the following expression. 
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Now let us see the source matrix. Just to summarize, we started with the following the 

expression for functional F  

𝐹 =
1

2
[∅𝑇𝐴∅ − ∅𝑇𝐷∅] − 𝐵∅ 

and after minimization, we would get  

𝐴∅ − 𝐷∅ = 𝐵 

We have already seen the derivation of A which is a standard global coefficient matrix and we 

just saw how to derive 2 × 2 coefficient matrix D for element 1 and similarly it can be done 

for other elements.  

Now we will see how to evaluate the  source (B) matrix which represent the source. The source 

term for the first element is given below.  



∫ 𝑥∅𝑑𝑥

𝑥2

𝑥1

= ∫ 𝑥 (
𝑥2 − 𝑥

𝑙
∅1 +

𝑥 − 𝑥1
𝑙

∅2)

𝑥2

𝑥1

𝑑𝑥 

Since it is for element 1, the limits of the integral are from 0 to l. Again just going back, the 

source term in this example is x. When you take the source term on right hand side it will 

become −𝑥𝜙 so integral will be ∫ 𝑥∅𝑑𝑥
𝑥2

𝑥1
 and 𝜙 = 𝑁1𝜙1 + 𝑁2𝜙2 where 𝑁1 is the shape 

function for node 1 and 𝑁2 is the shape function for node 2 and then this can be written elegantly 

in the matrix form as given below.  

∫ 𝑥∅𝑑𝑥

𝑥2

𝑥1

= ∫ 𝑥 (
𝑥2 − 𝑥

𝑙
∅1 +

𝑥 − 𝑥1
𝑙

∅2)

𝑥2

𝑥1

𝑑𝑥 = [∅1 ∅2] [
𝑏1
𝑏2
] 

 So now this 𝑏1 can be calculated by using the following expression.  

𝑏1 = ∫ 𝑥 (
𝑥2 − 𝑥

𝑙
)

𝑥2

𝑥1

𝑑𝑥 =
1

𝑙
[
𝑥2(𝑥2

2 − 𝑥1
2)

2
−
(𝑥2
3 − 𝑥1

3)

3
] 

Now instead of 0 to l, the limits are taken as 𝑥1 to 𝑥2 so that we can generalize. Although we 

are doing this for the first element, this is applicable for the second or third element for the 

corresponding first nodal coordinate. So instead of 0 to l (because 0 to l will be valid for the 

first element), we are generalizing it as 𝑥1 to 𝑥2. 

 Now b2 can be calculated by using the following expression. 

𝑏2 = ∫ 𝑥 (
𝑥 − 𝑥1
𝑙
)

𝑥2

𝑥1

𝑑𝑥 =
1

𝑙
[
(𝑥2
3 − 𝑥1

3)

3
−
𝑥1(𝑥2

2 − 𝑥1
2)

2
] 

 Anyway we are forming the source term in matrix form as given below.  

[∅1 ∅2]

[
 
 
 
 
1

𝑙
[
𝑥2(𝑥2

2 − 𝑥1
2)

2
−
(𝑥2
3 − 𝑥1

3)

3
]

1

𝑙
[
(𝑥2
3 − 𝑥1

3)

3
−
𝑥1(𝑥2

2 − 𝑥1
2)

2
]
]
 
 
 
 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛
⇒          𝐵𝑒 =

[
 
 
 
 
1

𝑙
[
𝑥2(𝑥2

2 − 𝑥1
2)

2
−
(𝑥2
3 − 𝑥1

3)

3
]

1

𝑙
[
(𝑥2
3 − 𝑥1

3)

3
−
𝑥1(𝑥2

2 − 𝑥1
2)

2
]
]
 
 
 
 

 



So 𝑏1 is given by evaluating its corresponding integral and we will get the first term of 𝐵𝑒 

matrix. Similarly, b2 is calculated by solving the previous integral, which will give the second 

term in 𝐵𝑒 matrix.   

Now you can write the energy due to source term as multipliclation of two matrices as given 

above. The expressions for 𝑏1 and 𝑏2 are written as given in the above matrix equation. After 

minimization, that means when we differentiate the energy term with respect to 𝜙1 and  𝜙2, 

you will get the element level 𝑏 matrix. Thus we have understood how do we calculate the 

entries of matrices 𝐴, 𝐷, and 𝐵. And we have already seen the derivation of matrix A in case 

of Poisson’s equation, but this 𝐷 matrix would be required when you are solving either wave 

equation or diffusion equation.  

Now we will start with the explanation of a 1D FE code and my PhD student B. Sairam has 

developed that code. So he will explain it to you. 

As we discussed in the previous slide, we will be developing a 1-dimensional FE code to solve 

a 1-dimensional partial differential equation that we have seen in the previous lectures.  
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The 1-dimensional partial differential equation and the corresponding boundary conditions  are 

given below. 

 



It is the same equation that we have solved manually using whole domain approach and FE 

procedure with 3 elements in the previous lectures. Now we will solve the same equation using 

a code. After applying FE procedure, the above partial differential equation will be converted 

into a linear system of equations or a matrix equation of the form which is given below. 

𝐴∅ − 𝐷∅ = 𝐵 

 And then the above equation will again be simplified as given below.   

(𝐴 − 𝐷)∅ = 𝐵
 
⇒𝐾∅ = 𝐵 

In the above equation, considering 𝜙 as common, will result into (𝐴 − 𝐷)∅ and 𝐴 − 𝐷 is taken 

as 𝐾 and 𝜙 is represented as 𝑈. As you have seen in the previous lecture, the partial differential 

equation will be converted into a matrix form and then it is simplified into 𝐴𝑋 = 𝐵 form. Here 

A is nothing but K and the unknown matrix X is nothing but 𝜙 and B is the source matrix. In 

the previous lecture, we have seen a 3-element example. In that example, we have 3 elements 

and 4 nodes using which we formed a simple 4 × 4 matrix. Using three  2 × 2 element level 

matrices we have formed one 4 × 4 matrix and it is reduced to a 2 × 2 matrix after applying 

boundary conditions. Since the number of elements are less it is obvious and simple to do it 

manually, but if we increase the number of elements then it will be a very tough job to form 

those matrices manually.  Let us say that if  we have chosen some 5 elements with 6 nodes then  

the global coefficient matrix will be of size 6 × 6. After applying boundary conditions, the size 

of the matrix reduces to 4 × 4 then how you can take the inverse of that matrix. Manually doing 

that is a very tough job. We can easily do such kind of operations by using scientific computing 

software like Scilab, MATLAB, python, etc. Here in this course, we will be developing codes 

on Scilab only. We have chosen Scilab because most of the syntax of Scilab and MATLAB are 

similar.  

Most of the parts of the code that is being demonstrated can be used in MATLAB directly with  

only one or two changes. The codes you developed in Scilab can be simulated in MATLAB.  

We will now see what are all the steps involved in developing a 1D FE code.  

Since the first lecture of the FEM module we have seen FEM starts with choosing a geometry, 

discretizing the geometry, formulating element coefficient matrices and then joining them to 

form global coefficient matrix. After applying boundary conditions, the resulting matrix 



equation is solved. These are the only steps to solve any partial differential equation by using 

FEM.   

Only in the case of transient analysis, we will be solving the matrix equations every time, but 

the procedure will be same. The same procedure can be used  to solve various differential 

equations which we will see in this course.  In next lecture, we will see the complete coding 

procedure in Scilab. We will stop here and continue in next class. Thank you. 
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