
Electrical Equipment and Machines: Finite Element Analysis 

Professor Shrikrishna V Kulkarni 

Department of Electrical Engineering 

Indian Institute of Technology, Bombay 

Lecture 14 

1D FEM: Problem Definition and Shape Function 

(Refer Slide Time: 00:15) 

 

In the previous lecture, we discussed whole domain approximation, in which the potential is 

approximated using the following equation.  

𝜙(𝑥) = 𝐶1𝑝1(𝑥) + 𝐶2𝑝2(𝑥)+. . . . . +𝐶𝑛𝑝𝑛(𝑥) 

where we have assumed the unknown potential function as 𝜙 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 . So, you can 

then generalize this approximation  as just 𝐶1𝑝1(𝑥) + 𝐶2𝑝2(𝑥)+. . . . . +𝐶𝑛𝑝𝑛(𝑥). Effectively in 

𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2,  𝐶0 was replaced by 𝐶1 to make it uniform in terms of formulation. And also 

remember it was only 𝐶0 in the previous approximation and here in the above expression it is 

𝐶1 times some function of x, but that could be written as 𝐶0𝑥0. Here it is generalized for 

maintaining the uniformity of the formulation. The first term could be a constant also. Each 𝑝𝑖 

is a polynomial function of either x or x2 or x3 . 

Consider Poisson’s equation 𝜙′′ = −ℎ and then the corresponding functional for Poisson’s 

equation is  

𝐹 =
1

2
∫[(𝜙′)2 − 2𝜙ℎ] 𝑑𝑥 



Now, we will generalize the whole formulation that we did for the 1 D problem in the previous 

lecture. 

So, what did we do there? In F,  you can substitute 𝜙′ and 𝜙 derived using the above 

generalized expression. The expression of functional will be simply 

 
2

1 1 2 2 1 1 2 2

1
... ...

2
n n n nF C p C p C p dx C p C p C p hdx   = + + + − + + +

  
 

The two terms of the previous integral are separated and that is why 2 does not appear in the 

second integral, because  𝐹 =
1

2
∫[(𝜙′)2 − 2𝜙ℎ] 𝑑𝑥, 

1

2
  gets cancelled with 2 in 2𝜙ℎ . The above 

expression of F can be written in an elegant form using matrices  as given below. 

𝐹 =
1

2
𝐶𝑇𝐴𝐶 − 𝐶𝑇𝐵 ⇒ 𝐴𝑖𝑗 = ∫ 𝑝𝑖

′𝑝𝑗
′𝑑𝑥 , 𝐵𝑖 = ∫ 𝑝𝑖ℎ 𝑑𝑥 

Now, how did we get this? If we take a simple example with two terms as given below and 

without the integral  

1

2
[𝐶1𝑝1

′ + 𝐶2𝑝2
′ ]2 =

1

2
[𝐶1

2(𝑝1
′ )2 + 𝐶2

2(𝑝2
′ )2 + 2𝐶1𝐶2𝑝1

′ 𝑝2
′ ] 

And the above expression can be written in an elegant way consisting of matrices as given 

below.  

1

2
[𝐶1

2(𝑝1
′ )2 + 𝐶2

2(𝑝2
′ )2 + 2𝐶1𝐶2𝑝1

′ 𝑝2
′ ] =

1

2
[𝐶1 𝐶2] [

(𝑝1
′ )2 𝑝1

′ 𝑝2
′

𝑝1
′ 𝑝2

′ (𝑝2
′ )2] [

𝐶1

𝐶2
] 

If you expand the matrix expression, you will get the expression on the left hand side. Now, 

you have got the above matrix expression of F which is functional or the energy which has to 

be minimized.  
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If you evaluate 
𝜕𝐹

𝜕𝐶
= 0, it will simply reduce to 𝐴𝐶 − 𝐵 = 0.  The derivative of 

1

2
𝐶𝑇𝐴𝐶 will 

be 𝐴𝐶 because it is effectively 
1

2
𝐴𝐶2. 𝐶2 derivative is 2𝐶. So, 𝐴𝐶 will be its derivative and 

derivative of 𝐵𝐶 will be simply 𝐵. Therefore, the total derivative of F will be 𝐴𝐶 − 𝐵 = 0 

which is the final linear system of equations.  C has coefficients of the potential function 𝜙 and 

they can be easily evaluated because 𝐵 is known which depends on source conditions and 𝐴 

can be evaluated using the procedure which we will see. If it was a wave equation, then you 

would get one more term (𝐶𝑇𝐷𝐶) along with the two terms as given below. Because for wave 

equation you have 𝜙 term. 



𝐹 =
1

2
[𝐶𝑇𝐴𝐶 − 𝐶𝑇𝐷𝐶 − 2𝐶𝑇𝐵] 

 𝜙′′ + 𝜙 + 𝑥 = 0 is the wave equation. Poisson’s equation is just simply 𝜙′′ + 𝑥 = 0 where 𝑥 

stands for ℎ source. So, when you have 𝜙 in the equation as mentioned to you earlier it will 

become 𝜙2 in the functional expression. This again can be written in an elegant matrix 

multiplication form as −𝐶𝑇𝐷𝐶 where 

𝐷𝑖𝑗 = ∫ 𝑝𝑖𝑝𝑗𝑑𝑥 

  Remember 𝑝𝑖 and 𝑝𝑗 are the corresponding polynomial expressions in x.  

Then if you do minimization by calculating 
𝜕𝐹

𝜕𝐶
= 0, you will get the following equation 

𝜕𝐹

𝜕𝐶
= 0 = 𝐴𝐶 − 𝐷𝐶 − 𝐵 = 0 ⇒ [𝐴 − 𝐷]𝐶 = 𝐵 

Again in the above equation, 𝐵 is known and it is a function of source condition and here 𝐴 

and 𝐷 matrices are also known. 𝐴 matrix depends on the material properties and the geometrical 

dimensions. We will see more of this and what do they mean little later. 
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Now we will take the same example of Poisson’s equation in 1D and we will see how this 

generalized formulation can be used to get the final set of equations and the solution. What we 



did earlier was whole domain approximation. It is difficult to choose a proper function like 

𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + 𝐶3𝑥3 for a complicated problem. 

 If the solution of the problem is a complicated potential distribution, it will be difficult to find 

a proper polynomial expression which can fit closely to its exact solution. So, what we can do, 

instead of choosing a polynomial function over the entire domain, we will approximate the 

solution for each finite element. Now, we are slowly getting into finite element formulation. 

Now, we will divide that one-dimensional domain as shown in the following figure. 

 

Suppose the one dimensional domain is divided into a number of segments which are called as 

finite elements. Then over each element, for example for element 1 between nodes 1 and 2 we 

can assume 𝜙 as 𝑎 + 𝑏𝑥 which is much simpler. Earlier in one of the first lectures also I must 

have mentioned to you this, when we saw the difference between numerical and analytical 

techniques.  Suppose if you have some actual solution like the one shown in the above figure  

then it is difficult to assume an approximate solution which can closely match the solution over 

the entire domain. Rather than approximating the entire solution, you could subdivide this into 

a number of segments. Over each of these segments, you can assume 𝑎 + 𝑏𝑥 as the solution. 

Because these segments are straight lines, potential can be represented as 𝑎 + 𝑏𝑥. Remember 

the values of 𝑎 and 𝑏 will be different for different segments. That means for each segment, 

the unknowns are 𝑎 and 𝑏, but later on, we will see that we will not solve the problem in terms 

of 𝑎 and 𝑏. We will eliminate these parameters, 𝑎 and 𝑏, and we will solve it in terms of nodal 

potentials 𝜙1 and 𝜙2. 

 Going further, if we agree that it is easier to approximate the solution over each segment using  

a linear approximation instead of complicated higher-order approximations, for the first 

element, let 𝜙 = 𝑎 + 𝑏𝑥. The value of potentials at the two nodes can be determined by 

substituting the values of 𝑥1 and 𝑥2 and the corresponding 𝜙1 and 𝜙2 are as given below  



𝜙1 = 𝑎 + 𝑏𝑥1

𝜙2 = 𝑎 + 𝑏𝑥2
 

 So, that will give 𝜙1 and 𝜙2 in matrix form as given below.  

[
𝜙1

𝜙2
] = [

1    𝑥1

1    𝑥2
] [

𝑎
𝑏

] 

You can write these equations in a matrix form because  𝜙1 will be simply 𝑎 + 𝑏𝑥1 and 𝜙2 will 

be 𝑎 + 𝑏𝑥2. Now, we will eliminate these two parameters 𝑎 and 𝑏 by rearranging the above 

matrix equation as given below.  

[
𝑎
𝑏

] = [
1    𝑥1

1    𝑥2
]

−1

[
𝜙1

𝜙2
] 

 If you expand the inverse term, the above equation reduces to  

[
𝑎
𝑏

] =
1

𝑥2-𝑥1
[
𝑥2   -𝑥1

-1     1 
] [

𝜙1

𝜙2
] 

Here, 𝑥2 − 𝑥1 = 𝑙 and further you get the expressions of 𝑎 and 𝑏. So, the variation of potential 

in element 1 as a function of 𝑥 can be written as  

𝜙(𝑥)
(1)

= [1   𝑥] [
𝑎
𝑏

] 

 Now we are replacing the column vector [
𝑎
𝑏

] by the previous equation, we obtain 

𝜙(𝑥)
(1)

= [1   𝑥] [
𝑎
𝑏

] = [1   𝑥]
1

𝑙
[
𝑥2   -𝑥1

-1     1 
] [

𝜙1

𝜙2
] =

1

𝑙
(𝑥2 − 𝑥)𝜙1 +

1

𝑙
(𝑥 − 𝑥1)𝜙2 

Effectively what we have done is the potential 𝜙 in the element 1 is expressed in terms of the 

potential of end nodes. Why we are doing this? Because finally we want to minimize the overall 

energy of the system using energy for each element. For example, energy is a function of 

potential at every point in that element. But that would be cumbersome to handle. So we are 

expressing the energy of an element in terms of potentials of its end nodes and eventually you 

can imagine that we will get the total energy expression as a function of only the nodal 

potentials. If we can calculate energy for one element, we can do it for the other elements in 

the domain using the same procedure. So, that means the total energy will be a function of only 

the nodal potential values. 



And the energy can be minimized by taking derivative of F with respect to each of the potentials 

and equating it to 0. Then we will get a set of equations which can be solved. So, in nutshell, 

this is what finite element method is and we will see more of this and we will consolidate this 

learning as we go ahead.  

Now, it is a matter of details. What we are doing is, we are calling 
1

𝑙
(𝑥2 − 𝑥) as 𝑁1 and 

1

𝑙
(𝑥 − 𝑥1)as 𝑁2. So, 𝜙𝑥

(1)
potential in at any x in element 1 can be expressed as 

𝜙𝑥
(1)

= 𝑁1
 𝜙1 + 𝑁2

 𝜙2 
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Now, what are these 𝑁1 and 𝑁2? 𝑁1 and 𝑁2 are the shape functions of nodes 1 and 2. What are 

their properties? You can see 𝑁1 = 1 at node number 1 and it is equal to 0 at node number 2. 

You can verify that by substituting the coordinate of 𝑥1 in the expression of 𝑁1, it will be equal 

to 1 as given below  

𝑁1(𝑥1) =
𝑥2 − 𝑥1

𝑙
=

𝑥2 − 𝑥1

𝑥2 − 𝑥1
= 1 

But the value of 𝑁1 at node number 2 (𝑥 = 𝑥2) will be 0 as given below.  

𝑁1(𝑥2) =
𝑥2 − 𝑥2

𝑙
=

0

𝑥2 − 𝑥1
= 0 



Similarly 𝑁2 = 1 at node number 2 and equal to 0 at node number 1. This has to be because 

see the following expression of 𝜙 in element 1  

𝜙𝑥
(1)

= 𝑁1
 𝜙1 + 𝑁2

 𝜙2 

Remember, the number in the bracket represents element number. In the above equation, it is 

element 1. 

Now, if I calculate 𝜙𝑥1

(1)
at node number 1, it will be equal to 𝑁1

 (𝑥1)𝜙1 + 𝑁2
 (𝑥1)𝜙2, but for 

𝜙𝑥1

(1)
= 𝜙1, 𝑁1 has to be 1 and 𝑁2 has to be 0. Similarly, 𝜙𝑥2

(1)
= 𝑁1

 (𝑥2)𝜙1 + 𝑁2
 (𝑥2). So for 

𝜙𝑥2

(1)
= 𝜙2, 𝑁2 has to be 1 and 𝑁1 has to be 0 at node 2. So, these properties of shape functions 

are logical.   

Now, similarly, potential in element 2 can be written as  

𝜙𝑥
(2)

= 𝑁2
 𝜙2 + 𝑁3

 𝜙3,        𝑁2
 =

𝑥3 − 𝑥

𝑙
, 𝑁3

 =
𝑥 − 𝑥2

𝑙
 

Because element 2 is between nodes 2 and 3. Then the same set of properties are applicable for 

𝑁2 and 𝑁3. Here  𝑁3 = 1 at node 3 and 𝑁3 = 0 at node 2. Similarly, potential for element 3 is  

given below 

𝜙𝑥
(3)

= 𝑁3
 𝜙3 + 𝑁4

 𝜙4       𝑁3
 =

𝑥4 − 𝑥

𝑙
, 𝑁4

 =
𝑥 − 𝑥3

𝑙
 

Now we are taking a 3-element example with 4 nodes as shown in the following figure. The 

variations of shape functions in each element are also indicated.  The length of each element is 

𝑙 so the total length of the domain is 3𝑙   

 

Here 𝑁1 is shape function of node number 1 and it will be 0 at node number 2 and this is 

indicated in the above figure. 𝑁2 has now 2 sets of expressions, which are given below.  



𝑁2 = {

𝑥 − 𝑥1

𝑙
,    𝑥1 ≤ 𝑥 ≤ 𝑥2

𝑥3 − 𝑥

𝑙
,     𝑥2 ≤ 𝑥 ≤ 𝑥3

 

𝑁2 is valid in elements 1 and 2. 𝑁2 is 1 at node number 2 in both elements and  it goes to 0 at 

node number 1 and node number 3. So, that is why 𝑁2 has two expressions. 𝑁2 for the first 

element is 
𝑥−𝑥1

𝑙
 and 𝑁2 expression for the second element in 

𝑥3−𝑥

𝑙
. So, we have to remember 

that the expression of 𝑁2 for the first element is not valid for the second element. Although, 

you can always substitute some value and you will get an answer, but it is not valid. The 

expression of 𝑁2 of element 1 is valid only in the first element. The expression of 𝑁2 of element 

2 is valid only in this second element. So, in element number 1, only 𝑁1 and 𝑁2 exist.  

In element 2, 𝑁2 and 𝑁3 exist and in element 3, 𝑁3 and 𝑁4 exist. 𝑁2 = 0 in element 3 because  

it is undefined or invalid. If you substitute any value of x of element 3 in 𝑁2, you will get some 

value, but it is not valid. 
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So, the properties that are discussed in the previous slide are explained in the following figure.  

 



The function shown in the above figure is also called as a rooftop function in some textbooks. 

In the above figure, you can see that the value of  𝑁2 is 1 at node number 2 and it is 0 at all 

other nodes 1, 3 and 4, and for the entire element 3, N2 is not defined. 

𝑁2 has two expressions which are given below. 

𝑁2 = {

𝑥 − 𝑥1

𝑙
,    𝑥1 ≤ 𝑥 ≤ 𝑥2

𝑥3 − 𝑥

𝑙
,     𝑥2 ≤ 𝑥 ≤ 𝑥3

 

The first equation is valid for the first element between 𝑥1 and 𝑥2 and the other equation is 

valid for the element between 𝑥2 and 𝑥3.  Remember, at node 2 whether you evaluate the first 

expression or the second expression, both will give you 1, that is why, it is less than or equal 

to is defined for the limits of both the equations. So, now we can generalize that the 𝜙 at any x 

in the entire domain with 3 elements can be written as  

𝜙(𝑥) = 𝑁1(𝑥)𝜙1 + 𝑁2(𝑥)𝜙2 + 𝑁3(𝑥)𝜙3 + 𝑁4(𝑥)𝜙4 

For element 1, it will be just 𝑁1(𝑥)𝜙1 + 𝑁2(𝑥)𝜙2 because N3 and N4 are equal to 0. Similarly, 

for element 2, it will be 𝑁2(𝑥)𝜙2 + 𝑁3(𝑥)𝜙3. So the above expression is a generalized 

expression of 𝜙.  

Now, let us solve Poisson’s equation and see the FEM procedure in 1D. So first we will see 1D 

and then later we will see FE procedure for 2D problems.  So, again we are solving Poisson’s 

equations (𝜙′′ + ℎ = 0) where h represents a source and we have seen the energy functional 

to be minimized in this problem is as given below. 
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The functional for Poisson’s equation is modified as given below by substituting the general 

expression for 𝜙.  

𝐹 =
1

2
∫ [𝑁1

′𝜙1 + 𝑁2
′𝜙2 + 𝑁3

′𝜙3 + 𝑁4
′𝜙4]2𝑑𝑥 − ∫ [𝑁1𝜙1 +  … + 𝑁4𝜙4]ℎ 𝑑𝑥 

3𝑙

0

3𝑙

0

 

Remember one important thing in the expression of (𝜙′)2, the derivative sign does not appear 

on 𝜙1, 𝜙2and all that, because they are not varying with x and y. 𝑁1, 𝑁2, 𝑁3 and 𝑁4 vary with 

x, because they are shape functions. As discussed in the previous lecture, if you remember in 



the variational formulation of FEM, we have not varied potentials at every point. So 𝜙 at every 

point is not a function of x in the variational procedure. In this procedure, we are changing the 

potential values at every x and we will see which combination of potentials at various nodes is 

going to give the minimum energy. 

So, 𝜙𝑖 potentials at various points are not made to vary with x in the energy minimization 

procedure. Here only the shape functions are functions of x. So, that is why, we are taking 

derivatives only for shape functions in the above expression and 𝜙1, 𝜙2, 𝜙3 and 𝜙4 are not 

varying with x in the variational formulation. 

The limits of the integral are from 0 to 3𝑙 because 3l is the total length of the domain under 

consideration. Now this can be written in matrix form as given below. 

𝐹 =
1

2
𝜙𝑇𝐴𝜙 − 𝜙𝑇𝐵 ⇒ 𝐴𝑖𝑗 = ∫ 𝑁𝑖

′𝑁𝑗
′𝑑𝑥,

3𝑙

0

𝐵𝑖 = ∫ 𝑁𝑖ℎ 𝑑𝑥
3𝑙

0

 

 And then when you evaluate 
𝜕𝐹

𝜕𝜙
 = 0, you will get 𝐴𝜙 − 𝐵 = 0 that will give you 𝐴𝜙 = 𝐵. 

Now, see the difference, earlier it was 𝐴𝐶 = 𝐵 in the previous case when we had done the 

whole domain approximation in terms of 𝜙 = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2. The unknowns were the 

coefficients 𝐶0, 𝐶1 and 𝐶2 and that is the matrix 𝐶 and that is the whole domain approximation 

and over the entire domain we approximated or we assumed some potential distribution using 

a polynomial function. But in the present case, we have not done that, we have approximated 

the potential over each segment or element using 𝜙(1) = 𝑎 + 𝑏𝑥. 

And then we eliminated the parameters 𝑎 and 𝑏 and we made the potential approximation as a 

function of the end node potential values and that is the reason why our unknown variables 

become the nodal potentials at all the nodes 1, 2, 3, and 4. So, from the case of coefficients 

being unknown, we have come to the case where nodal potentials are unknown variables. 

Earlier, the coefficients (𝐶0, 𝐶1, 𝐶2) were variables.  

Now, here 𝜙0, 𝜙1, 𝜙2 are unknowns and then when we minimize the energy with respect to 

𝜙𝑖s, and we will finally get potentials at various nodes in the problem domain. Of course, there 

will be some boundary conditions, in terms of some known potentials, to be applied; we will 



see that later. Now, finally we have got the set of linear equations (𝐴𝜙 = 𝐵) after applying the 

FEM procedure.  

So, the FEM procedure involves discretization of the problem domain into segments as given 

below.  

 

After the discretization procedure, we got 𝐴𝜙 = 𝐵. Earlier 𝜙 was a continuous variable when 

it was a whole domain approximation or if it was some analytical solution, then 𝜙 would be a 

continuous variable. 

But in the FE formulation, 𝜙 is not a continuous variable because  it is defined only at the nodes 

of the discretized domain. So, from the continuous domain, we have come to a discretized 

domain. 𝐴𝑖𝑗 of the final matrix equation can be written as  

𝐴𝑖𝑗 = ∫ 𝑁𝑖
′𝑁𝑖

′𝑑𝑥
3𝑙

0

 

 Now how do we evaluate this integral? When 𝑖 = 𝑗, and there are 2 cases here, one is for nodes 

2 and 3 and the other is for nodes 1 and 4. You can write 𝐴𝑖𝑖 as 

 

In the above expressions, 𝑖 = 𝑗 = 2  and 𝑁𝑖 = 𝑁𝑗 = 𝑁2. So, now we have to split this 0 to 3l 

integral into three integrals 0 to 𝑙, 𝑙 to 2𝑙, and 2𝑙 to 3𝑙.  The 𝑁2 in the first integral with limits 

0 to l will be simply 
1

𝑙
  and it basically defines the slope of the shape function.  

In the second element, from 𝑙 to 2𝑙, 𝑁2
′ is the slope −

1

𝑙
 and in the third integral i.e, the third 

element 𝑁2 is not defined and it is equal to 0. So, if you evaluate the two integrals, their sum 

will be 
2

𝑙
  as given above. The same thing will be true for 𝐴33 also with 𝑁𝑖 = 𝑁𝑗 = 𝑁3. In the 



integral for  𝐴33, in the first element will be 0 because 𝑁3 is not defined. Also the value of 

𝐴33 is equal to 
2

𝑙
.  

 But 𝐴11 and 𝐴44 are different from 𝐴22 and 𝐴33 because nodes 2 and 3 are common to 2 

elements, whereas 1 and 4 are appearing only in one element.  

 Now we will calculate 𝐴11. 𝑁1
′ = −

1

𝑙
 because 𝑁1 is reducing in element 1 so it is reducing 

slope which is equal to −
1

𝑙
 and 𝑁1 is 0 in the other two elements. In the expression of 𝐴11, 

the values of two integrals will be zero as given below. 

 

And 𝑁1 appears only in the first element and for the other two integrals it will be 0. So, the 

value of 𝐴11 =
1

𝑙
 and now let us consider the off diagonal elements that is for 𝑖 ≠ 𝑗. Now, in 

the expression of 𝐴𝑖𝑗 , you will get 𝑁𝑖
′ and 𝑁𝑗

′ as given below for 𝐴23. 

 

Let us consider the 𝐴23 entry and its value is equal to 
1

𝑙
. The contributions of the first and 

second integrals are equal to 0 because 𝑁3
′ is 0 (or not defined) in element 1 and 𝑁2

′ is 0 (or not 

defined) in element 3. So, 𝐴23 = −
1

𝑙
. Only in segment 2, both 𝑁2 and 𝑁3 are non zero and 

will contribute to 𝐴23. And that is why 𝑁2
′ and 𝑁3

′ exist is this segment and the slope of 𝑁3 is 

positive and it is equal to 1/l and the slope of  N2 is negative and it is equal to –1/l. and that is 

why you get the value of 𝐴23 as simplify –1/l. And this will be valid for other off diagonal 

entries where there is connectivity like 12, 21, 32, 23, 34, and 43. So, where there is a direct 

connectivity between nodes, you will get –1/l  and where there is no connectivity, you will get 

the off diagonal entry as 0. 
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There are 6 off diagonal elements where there is no connectivity, like between nodes 1 and 4 

because either 𝑁1 is 0 or 𝑁4 is equal to 0 in the three integrals. So when there is no connectivity  

then one of them will be 0. For example if we are calculating 𝐴14, you will find that in every 

segment either 𝑁1 = 0 or 𝑁4 = 0 or both are 0. For example, in segment 2 both 𝑁1 and 𝑁4 are 

0.  So, effectively what we have done? We have evaluated all the entries of 𝐴 matrix. Similarly 

we can evaluate 𝐵 matrix which is defined as given below 

𝐵𝑖 = ∫ 𝑁𝑖ℎ 𝑑𝑥
3𝑙

0

 



B matrix is representing the source.  For example if you evaluate B1, then the above integral is 

valid only for element between 0 and l because N1 is 0 or not valid in the other two segments.  

So, the integral of the above integral reduces to 0 to l instead of 0 to 3l because in the second 

and third segments, N1 is 0. You substitute the expression of N1 in the formula of B1 as given 

below.  

𝐵1 = ℎ ∫ [
𝑥2 − 𝑥

𝑙
] 𝑑𝑥,      𝑥2 = 𝑙

𝑙

0

 

 Then you can evaluate the integral and you will get  

𝐵1 =
ℎ𝑙

2
 

 The same thing will be for B4.  

Now, nodes 2 and 3 are common to two segments that is why you get two terms in the 

corresponding source term as given below 

 

Because N2 and N3 are non zero for over two segments so that is why you get two terms in the 

above expression and the corresponding expression for B2 is hl.  

Effectively, for nodes 2 and 3, both elements are contributing because they are common. So 

the final 𝐴𝜙 = 𝐵 equation can be written as given below. 

 

Then the above matrix equation can be solved after substituting the boundary conditions and 

the unknowns in the above equation is the 𝜙 matrix and the right hand side matrix (B matrix) 

is known because h is known and it represents source.  So, then you can calculate the unknown 



vector which is [𝜙1 𝜙2      𝜙3 𝜙4]𝑇 , some of the potentials of the unknown vector would be 

known.  

Now, one question that may arise is why non zero off diagonal entries of A are negative? 

Intuitively, you can understand using the following explanation.  

 

Our basic thing is the electrostatic energy calculated by using 
1

2
 𝜖𝐸2. So, energy for each 

element is proportional to the corresponding square of the magnitude of electric field intensity. 

So, now in the above example, there are three elements and later we are going to take 𝜙1 = 0 

and 𝜙4 = 1 as boundary conditions. In this case, the electric field intensity will be directed 

from nodes 4 to 1. 

So, that means electric field intensity magnitude will be proportional to 𝜙2 − 𝜙1, E2 for element 

number 1 will be proportional to (𝜙2 − 𝜙1)2 and if we expand this you get (𝜙2 − 𝜙1)2 =

𝜙2
2 + 𝜙1

2 − 2𝜙1𝜙2.  In this expression, the square terms are diagonal entries which will be 

positive and  −2𝜙1𝜙2 represent off diagonal terms. This is just a logical explanation of why 

we are getting a negative sign for off diagonal entries.  
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𝐴𝜙 = 𝐵 is the final matrix equation. Now, we impose the boundary conditions which are in 

terms of 𝜙1and 𝜙4. The boundary conditions for this problem are  𝜙1 = 0 and  𝜙4 = 1 𝑉. Now, 

to apply these boundary conditions, we are expanding the second and third rows of the matrix 

equation 𝐴𝜙 = 𝐵 as given below. 

 

Now the two terms 𝜙1 and 𝜙4 are transferred to the right hand side as given in the above 

equations. Because the right hand side in any linear system of equations like 𝐴𝑋 = 𝐵 represents 

known quantities.  

In the 2nd row of the equation, the term corresponding to 𝜙4 is getting multiplied by 0 so that 

is why, it is 0𝜙4, whereas in third row 0 gets multiplied by 𝜙1 so that is why 0𝜙1 and then we 

transfer the known potentials (𝜙1 and 𝜙4) in both these equations on the right hand side. So, 

the right hand side is completely known, because h, l, 𝜙1 and 𝜙4 are known. 

When we impose boundary conditions, effectively the 4 × 4 matrix equation  gets converted 

to 2 × 2  main matrix equation as given below.  

 

If you solve this matrix equation, you will immediately get the solution. So, for example, if h 

= 0, then it is Laplace’s equation and then in the above equation if we substitute h = 0 it will 

be only  𝜙1 and 𝜙4 on the right hand side and that is equal to 0 and 1 respectively as given 

below. 

 

If you solve this above equation, you will get  𝜙2 =  
1

3
 and 𝜙3 = 

2

3
 which is obvious because 

the whole domain is between 0 and 1 and we considered the nodes as  equi-spaced points. So, 



the potential at second node will  be 
1

3
 V  and the third node will have 

2

3
 V. If ℎ = 1  then it is 

Poisson’s equation  and you will get 𝜙2 and 𝜙3 as given below 

 

Presence of some charge throughout the region will change the potentials as compared to 

Laplace’s equation. We will stop here and continue next time. Thank you.  
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