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Welcome to the 13th lecture of this course, the previous lecture was little mathematical, 

but if you understood the content in that lecture, then FEM theory is more or less 

understood by you. Now the next lectures are more of applications to various PDEs.  
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Now, for example, we consider a non-homogeneous case defined by the following equation 

that we saw in the  last slide of the previous lecture. 

 

In the previous lecture, we had associated μ with J on the right hand side of the equation 

as given in the following equation. 

 



This equation will be applicable for a single material case.  But, generally μ will vary from 

point to point, because there could be more than one material in the problem domain.  

In case of nonlinear materials  like ferromagnetic materials, μ can vary from point to point. 

That means, when we discretize the whole geometry into a number of elements, in each of 

the elements we will assume μ as constant. So from element to element, μ will change.  

That is why, we cannot associate μ with J in any case. So, μ should be associated with the 

∇2 term and it should be inside the integral as given in the previous equation.  Now, for 

example, when we eventually see the finite element formulation, the 𝑑𝑥𝑑𝑦 term in the 

integral corresponds to the element level area. But till now we have assumed 𝑑𝑥𝑑𝑦 for the 

whole domain.  

So, 𝑑𝑥𝑑𝑦 corresponds to the entire problem domain area, but when we go to finite element 

formulation, this 𝑑𝑥𝑑𝑦 will corresponds with every element. Also, you cannot associate μ 

to J because it is current density of some winding.  

That is why, that expression has to be recast by taking 1/𝜇 with ∇2 term. When we solve 

a finite element problem, we need to consider the following points. First thing is the source 

term, then the material properties included with the ∇2 term and the boundary conditions.  

So, what actually does the first term which is enclosed in the following integral represent?  

 

The bracketed term represents the geometry and material properties of the problem domain. 

This term finally gives element level coefficient matrix and global coefficient matrix  when 

we apply finite element procedure. The global coefficient matrix will have information 

about material properties and geometry.  

 

 



The functional for the diffusion equation is given below.  

 

Theory about this equation also we have seen in basics. In the above expression of F you 

can see the ∇2𝐴𝑧 term in the PDE leads to the same term which we saw in Poisson’s 

equation case in electrostatics.  

Whatever is on the right hand side of the PDE, for example, for the diffusion equation there 

is a –J term, the corresponding term in the function will also have minus sign. If the 

−𝑗𝜔𝜎𝐴𝑧 term in the PDE is taken on to the right hand side then its sign will be plus and 

the sign of the corresponding term in the functional is also plus. So, whatever is the sign of 

the terms (other than ∇2𝐴𝑧 term) on the right hand side of the PDE, that sign repeats in the 

functional expression. Also those terms get multiplied with the corresponding potential 

(here, Az).  For example, for diffusion equation, the –J term on the right hand side in the 

PDE is converted to –AzJ  term in the functional. Similarly, the diffusion term on the right 

hand side of the PDE is 𝑗𝜔𝜎𝐴𝑧 and it is converted to 𝑗𝜔𝜎𝐴𝑧
2 in the functional expression.  

Similarly the functional for the wave equation is given below.  

 

 Now in this equation, h will be some source in the wave equation. For this equation also, 

the corresponding term of ∇2𝐴𝑧 in the functional is same as in case of Poisson’s equation.   

Now, if  you bring the 𝐾2𝐴𝑧of the PDE of the wave equation on the right hand side, then 

it becomes −𝐾2𝐴𝑧. In the functional, this term 𝐾2𝐴𝑧 is multiplied  with 𝐴𝑧. So, that is 

why, 𝐾2𝐴𝑧 becomes 𝐾2𝐴𝑧
2 in the functional expression.   



By inspection, we can obtain the functional expressions. Similarly, starting with PDE, you 

can derive the functional. We have covered this derivation in the previous lecture.  In the 

functionals for diffusion and wave equations, you can see that 𝐾2𝐴𝑧 does not get multiplied 

by 2, because  it is converted to a square term in the functional.You will understand why 

there is no 2 for 𝐾2𝐴𝑧 term and 2 gets multiplied to the source term when you actually do 

the procedure.  
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Now, we have finished the complicated theory related to FEM. Later on, we will see  

complexity in formulations.  We will see some simple examples, so that our learning will 

get consolidated.  

Consider an ODE as given below .  

 

The boundary conditions for this problem are 𝜙 = 0 at 𝑥 = 0 and 𝑥 = 1, that means, our 

one dimensional problem domain is from 𝑥 = 0 to 𝑥 = 1. And then you can recast this 

equation as given below. 



 

 Now if you apply the same logic that I explained to you, by inspection you can write the 

functional. The 𝜙′′ in the ODE will become (𝜙′)2 in the functional.  If you bring 𝜙 in the 

ODE to right hand side, it will become −𝜙 and that gets multiplied by the potential (𝜙), 

so, it becomes −𝜙2 and that does not get multiplied by 2, as I explained earlier. And this x 

is the source term,  do not consider this x as just a geometry variable. What it means is, the 

source at any x which is numerically equal to the x at that point.  

So, in effect x is representing the source and that is why it is multiplied with 2. By 

inspection, you can derive the functional. If it was simply Laplace equation, the coefficients 

of other two terms (𝜙 and 𝑥) would be 0, you will get only 
1

2
(𝜙′)2.  

If it is Poisson’s equation (𝜙′′ = −𝑥), then only this  𝜙2 term will go to 0. So, the integrand 

of functional will be only (𝜙′)2 − 2𝑥𝜙. So the corresponding functional for Poisson’s 

equation is 
1

2
∫ ((𝜙′)2 − 2𝑥𝜙)

1

0
𝑑𝑥.  

Now, one can easily find the exact solution for this ODE as 

 

You can verify this solution by applying boundary conditions, you will substitute  𝑥 = 0 

and 𝑥 = 1 in the above expression, you will get 𝜙 = 0,  that is a simple verification of the 

exact solution.  

Now, we are slowly getting into actual procedures of finite element method. In the finite 

element method what we have to do? In the above case,  the analytical solution does exist, 

but you can imagine if the ODE or PDE is more complicated, then you do not have the 

exact solution. In that case, you have to assume something. Let us assume some expression 

for 𝜙̃. Henceforth, whenever you see 𝜙̃ then it is an  approximate solution.  



Assuming 𝜙̃ = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2, it may be correct or wrong. But even if it is wrong, since, 

this is a numerical technique, there will be some error, but that error can be minimized. 

Only when it is exactly correct, the exact solution occurs, which is generally not possible 

for practical problems.  

Generally in numerical methods, we are not exactly correct, but we are not either too wrong 

also. There will be some errors because we are approximating the solution and those errors 

can be minimized by standard procedures in any numerical technique.  

So, 𝜙̃ = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 is  an approximated solution. And now we apply boundary 

conditions 𝜙̃ = 0 at 𝑥 = 0 and 𝑥 = 1 which we already know. For 𝜙̃(0) = 0, you 

substitute 𝑥 = 0 in the expression of 𝜙̃ which results in 𝐶0 = 0.  

Now, you use the other boundary condition 𝜙̃(1) = 0 , then you will get 𝐶1 + 𝐶2 = 0. And 

just to make it simple, consider 𝐶1 = −𝐶2 = 𝐶.  

Now this approximated solution expression reduces to 𝜙̃ = 𝐶(𝑥(1 − 𝑥)),  by substituting 

the values of 𝐶0 = 0 and 𝐶1 = −𝐶2 = 𝐶 . So, you will get 𝜙̃ = 𝐶(𝑥(1 − 𝑥)) , so then 𝜙̃′ =

𝐶(1 − 2𝑥)  which is the derivative of 𝜙 with respect to x. Then we will substitute the 

expressions of 𝜙 and 𝜙′ in the functional expression.  
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The functional expression reduces to  

 

The above expression represents the total functional and it represents the energy. Now, this 

energy has to be minimized with respect to which variable? After you evaluate the above 

integral,  F will be a function of only C. 

After evaluating the integral, the functional reduces to  

 

Then you have to differentiate the above expression of F with respect to C and then you 

get the C as given below. 

𝜕𝐹

𝜕𝐶
=

6𝐶

10
−

1

6
= 0 ⇒ 𝐶 =

10

36
 

 Now you substitute C in the expression of 𝜙̃ to obtain the solution as given below. 

𝜙̃ =
10

36
[𝑥 − 𝑥2] 

So here, first we are finding the functional and then differentiating it with the unknown 

variable C to calculate its value.  So, this leads to energy minimization which we discussed 

earlier. Here, we  are making 𝛿𝐹 = 0. So, 𝛿𝐹 = 0 amounts to differentiating F with respect 

to C and equating it to 0.  

Now, remember this is an example of whole domain approximation that is why here C is 

the unknown variable  and we are differentiating with respect to C to minimize the energy. 

When we actually see the finite element procedure which involves discretization of  a given 

problem domain into a number of elements, there the unknown variables will be the 

potentials at various nodes.  



So, there we will not use 
𝜕𝐹

𝜕𝐶
= 0 but it will be 𝜕𝐹/(corresponding potential variables) at 

various nodes. More details we will see later. Here, 𝜙̃ = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 was the second-

order approximation. Consider a third order approximation as given below. 

𝜙̃ = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + 𝐶3𝑥3 

In the above expression, one more term (𝐶3𝑥3) is added compared to the second order 

approximation.  If second-order approximation is not good enough then we consider third-

order approximation to get more accurate results. And indeed, we will see later that we get 

accurate results with 3rd order approximation.  

For the 3rd order approximation also you follow the same procedure. Using the first 

boundary condition (𝜙̃(0) = 0), you will get 𝐶0 = 0.  Now, it will be more complicated, 

because after applying the first boundary condition, we will be left with three variables 

(𝐶1, 𝐶2, and 𝐶3). Then you get a more complicated expression for F as compared to what 

we got for the 2nd order approximation . In the previous case, you got F with only one 

variable C, but in this case we will get it in two variables 𝐶2 and 𝐶3, because when you 

impose the second boundary condition,  you will replace 𝐶1 in terms of 𝐶2 and 𝐶3. So, 

𝐶1 will get eliminated. Eventually, the  expression of F will have only 𝐶2 and 𝐶3.  

When you evaluate the integral of functional, you will get the expression of F in terms of 

𝐶2 and 𝐶3 and then you will get two equations as given below because there are two 

unknowns. So, you differentiate F by 𝐶2 and then by 𝐶3 to equate it to 0 for minimizing 

the energy which leads to two linear equations and they are solved to calculate 𝐶2 and 𝐶3.  

0.6𝐶2 − 0.3𝐶3 = −
1

6
 

−0.286𝐶3 − 0.3𝐶2 = −
1

10
 

And then you get the following expression of 𝜙̃.  

𝜙̃ = −0.3392𝑥 + 0.2164𝑥2 + 0.1228𝑥3 



Let us go further and see error  distribution. 
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Now, in the following figure, the exact solution is in blue, second-order approximation is 

in green and black colour represents the third-order approximation. 

 

So, in the figure, you can see the third-order approximation is better than second order. If 

you go on increasing the order of approximation, then the numerical solution will match 

more exactly with the actual solution. But the computational burden will increase. Then 



we have to always compromise between the order of approximation, accuracy and the 

corresponding computational burden.  

So, in the following figure, we have plotted residual which is also called as error.  

 

In the above figure, you can see the error is not 0 everywhere except at three points. 

Somewhere it is positive, somewhere it is negative, and summation of error is also, not 

equal to 0. Here, the summation of error means ∫ 𝑒𝑟𝑟𝑜𝑟 𝑑𝑥 because it is a one-dimensional 

problem. So, ∫ 𝑒𝑟𝑟𝑜𝑟 𝑑𝑥 ≠ 0.  If you take the integral of the error curves with respect to x, 

you will find that the integral is not 0.  
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The value of ∫ 𝑒𝑟𝑟𝑜𝑟 𝑑𝑥 is calculated in the above slide. This is possible because we have 

the expression for the approximate solution that we obtained. The approximate solution 

that we obtained is given below  

𝜙̃ =
5

18
𝑥(1 − 𝑥) 

We obtained this solution using  the energy minimization procedure and applying boundary 

conditions. Now, ∫ 𝑒𝑟𝑟𝑜𝑟 𝑑𝑥 can be written as given below 

∫ 𝑒𝑟𝑟𝑜𝑟  𝑑𝑥 = ∫ 𝑅𝑑𝑥

1

0

 

 The residue R in the above equation is  

𝑅 = 𝜙̃″ + 𝜙̃ + 𝑥 

 𝜙̃ =
5

18
𝑥(1 − 𝑥) was our approximate solution . We are substituting 𝜙̃ and 𝜙̃′′ in the above 

expression of R to calculate the residue. And the value of R will not necessarily result into 

0 everywhere as shown in the following figure.  

 

In the above figure, we can see that only at one point the error  is 0. So, the value of R in 

general will not be 0 because it is an approximate solution. As shown in the above figure 

somewhere the error is positive and somewhere, it is negative. Now you integrate the error 

with respect to dx.   



Now, what is the error? Error at every point is given by the above expression of R. Now if 

you evaluate the expression of 𝜙̃″, you will get −
5

9
  and 𝜙̃ =

5

18
(𝑥(1 − 𝑥)). So, by 

substituting these expressions of 𝜙̃′′ and 𝜙̃ in R, the integral of error reduces to 

∫ 𝑒𝑟𝑟𝑜𝑟  𝑑𝑥 = ∫ 𝑅𝑑𝑥

1

0

= ∫ [−
5

9
+

5

18
𝑥(1 − 𝑥) + 𝑥] 𝑑𝑥

1

0

 

 And if you evaluate the above integral you will get the result which is not equal to 0.  
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Now, we will evaluate the following integral of 𝜙̃ error dx. It will be equal to 0 as given 

below.  

𝛿𝐹 = 𝛿 ∫ 𝜙̃ × [𝑒𝑟𝑟𝑜𝑟]𝑑𝑥

1

0

= ∫[𝜙̃″ + 𝜙̃ + 𝑥] 𝛿𝜙̃  𝑑𝑥 = 0 

And then we will also understand why error in 𝜙 is not only positive or not only negative. 

In the following figure, you can see somewhere the error is positive and somewhere, it is 

negative. Now, if we calculate this ∫ 𝜙̃ × [𝑒𝑟𝑟𝑜𝑟]𝑑𝑥
1

0
 . Now, we have seen this equation 



while deriving the functional in which we forced that this integral should be equal to 0 

which results into energy minimization. Now, let us see whether 𝛿𝐹 = 𝛿 ∫ 𝜙̃ ×
1

0

[𝑒𝑟𝑟𝑜𝑟]𝑑𝑥 = 0 get satisfied for this solution.  

So, we have the solution with second-order approximation as 𝜙̃ =
5

18
𝑥(1 − 𝑥).  Now, you 

substitute 𝜙̃ and 𝜙̃′′ in 𝛿𝐹 . The expressions of 𝜙̃ and 𝜙̃′′ are derived in the previous slide, 

the expression of the error is 𝑅 = −
5

9
+

5

18
𝑥(1 − 𝑥) + 𝑥. So, we are integrating 

𝜙̃ × [𝑒𝑟𝑟𝑜𝑟] and if you evaluate this, you will find that it comes identically equal to 0 as 

given below. So, it means that energy minimization condition is indeed getting satisfied.  

𝛿𝐹 = 𝛿 ∫ [
5

18
𝑥(1 − 𝑥)] [−

5

9
+

5

18
𝑥(1 − 𝑥) + 𝑥] 𝑑𝑥

1

0

= 0 

(Refer Slide Time: 22:45)  

 

In the above figure, you can see the variation of 𝑅 × 𝜙 ̃and then if you integrate this over 

x, the positive and negative areas in the above figure will exactly be equal and they will get 

cancelled.  
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Here, we are getting 𝛿 ∫ 𝜙̃ × [𝑒𝑟𝑟𝑜𝑟]𝑑𝑥
1

0
= 0 because we are forcing this equal to 0 to 

derive the expression of the functional. 
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Do you remember the above slide? Here you can see if the solution is exact, then 𝛁2𝜙 =

−ℎ at every point and 𝛿𝐹 = 0 ⇒ ∬ 𝑅 𝛿𝜙 𝑑𝑥𝑑𝑦 = 0 will be satisfied. If it is an 

approximate solution, then −𝛁2𝜙 − ℎ will be equal to some residual or error.  
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For example, if you see in this slide, the following expression is the starting step to derive 

functional from a given PDE.  

𝛿𝐹 = ∬(−𝛁2𝜙 − ℎ) 𝛿𝜙 𝑑𝑥𝑑𝑦 = 0 

Now, here 𝜙 in the integrand is an approximate solution and 𝑅 = −𝛁2𝜙 − ℎ is the residue.  

So we are making the integral of residue times 𝜙 as equal to 0. Here, we are forcing this 

condition, if 𝜙 is not the exact solution. If 𝜙 is the exact solution, then −𝛁2𝜙 − ℎ  is 

anyway equal to 0 and 𝛿𝐹 = 0. If 𝜙 is not exact, then there will be some residue R and that 

integral of residue multiplied by 𝜙 over the domain is forced to 0 as given in the above 

expression.  

So, if the solution is exact then 𝛿𝐹 = 0 gets exactly satisfied. If it is an approximate 

solution there will be an error, but that integral error multiplied with 𝜙, in this our case 𝜙̃,  

the 𝛿 will anyway come outside the above integral as given below,  

𝛿𝐹 = 𝛿 ∬(−𝛁2𝜙 − ℎ) 𝜙 𝑑𝑥𝑑𝑦 = 0 



which means the variation of integral residue times 𝜙 is equal to 0. So, in our case, it is 

only dx in the integral, since it is one dimension. So, this exactly confirms that we are 

minimizing the functional or energy and equating 𝛿𝐹 = 0  to determine the solution. If it 

is an approximate solution, it will amount to making ∬ 𝑅 𝜙 𝑑𝑥𝑑𝑦 = 0. In our case, it will 

be dx since this is a 1-D case. So, we will stop here and we will go to further theory in the 

next lecture.  
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