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Welcome to this 12th lecture. In the 11th lecture what we saw was that in order to get 

the solution for any partial differential equation in electromagnetics, we have to 

minimize the energy. So, when we say minimize the energy, we have to make the 

variation in F equal to 0. This condition will make F as stationary which means that the 

energy is minimum. The energy minimum condition is given by 𝛿𝐹 = 0  

 

And then we also saw that in the expression of 𝐹(𝜙 + 𝛿𝜙), 𝛿𝑥 = 0 because we are 

not varying x, but at every x, we are varying the potential 𝜙. So, we are varying the 

potential and the corresponding derivative of potential at every point. And we are 

finding a combination of potentials at various points, which will result in energy 

minimum condition. 

Also, remember the functional (F) is the energy or energy functional and that is 

expressed as  



 

In the above equation, f is a function of 𝑥, 𝜙, 𝜙′. But in case of Laplace equation, it is 

just a function of 𝜙′only. In the case of Poisson’s equation, it will be a function of 𝜙 

and 𝜙′. 

Then in the process of this minimization, we also saw that the 𝛿𝐹 = 0 leads to what 

is known as Euler-Lagrange equation which is given below.  

𝜕𝑓

𝜕𝜙
−

𝑑

𝑑𝑥
(

𝜕𝑓

𝜕𝜙′
) = 0 

The left hand side of the above equation is known as Euler-Lagrange expression. This 

equation is important and we will use this later also. 
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Now, the Euler-Lagrange expression for the one-dimensional case is given below.  

 



And 𝑓 =
1

2
𝜖𝐸2 which is incidentally the energy density in electrostatics and then if E 

is replaced by ∇𝑉, you get the energy density function as given below. 

 

So, if you substitute f in the Euler-Lagrange expression then, it will be simplified as 

given below. 

 

Now, let us understand a little bit more about the whole concept. We also saw that, if 

we know the exact solution of V, and that is substituted in f and that in turn is substituted 

in Euler-Lagrange equation, we get left hand side of Laplace equation. 

If we substitute 𝑓 =
1

2
∈ (

𝜕𝑉

𝜕𝑥
)

2

for 1D electrostatic problem, we get Laplace’s equation. 

And it is quite natural that we get Laplace’s equation because we already know that 

energy density function for the one dimensional electrostatic problem is 𝑓 =
1

2
∈ (

𝜕𝑉

𝜕𝑥
)

2

. 

Now, if we substitute 𝑉 = 𝑥, which is the actual solution in case of a parallel plate 

capacitor problem. It should be noted that in parallel capacitor problem, the top and 

bottom plates are having potentials of 10 V and 0 V respectively. Also, consider that 

the top plate is at x = 10 m and the bottom plate is at x = 0. So the distance between the 

2 plates is 10 m, then every equi-potential line say 9 V, 8 V, 7 V, 6 V will be at 9 m,8 

m,7 m,6 m. So, effectively we can say that the exact or actual solution for the parallel 

plate capacitor problem is simply 𝑉 = 𝑥. So, at 5 m from the ground plate, you will 

have 5 V, and likewise. So, 𝑉 = 𝑥 is the solution for that simple electrostatic problem 

without fringing at the ends. Now, if you substitute 𝑉 = 𝑥  in the Euler-Lagrange 

expression, we immediately get the whole thing equal to 0. And that means, Laplace’s 

equation is exactly satisfied. Since we already know the exact solution and then we 

substituted it in the Euler-Lagrange expression, it is quite natural that we are exactly 

satisfying Laplace’s equation and that is happening because when Euler-Lagrange 

expression is equals to 0, which means 𝛿𝐹 = 0. 



The whole theory that we saw is consistent for the solution of Laplace’s equation 

involving the parallel plate capacitor problem. Now, suppose, if we substitute 𝑉 = 𝑥0.9 

in f and correspondingly in Euler-Lagrange expression, that means, we are not 

substituting the exact solution that we know, but we are substituting an approximate 

solution. Now if you substitute 𝑉 = 𝑥0.9 in the Euler-Lagrange expression, then it is 

not coming equal to 0 as given below.  

 

That is why Laplace equation also will not get exactly satisfied, because we have 

assumed some solution, which is not the exact solution. So, this non zero value will be 

representing the error at every point, but that error can be minimized by, approximating 

a solution which is more closer to the exact solution by having more terms, whereas 

here we are just substituted 𝑥0.9.  

But for a complicated electrostatic problem (here it is a trivial solution 𝑉 = 𝑥, that is 

why this question does not arise), wherein there is a non-uniform field distribution, then, 

you will have to assume V as some complicated polynomial of x. And when you go 

through the entire procedure and you will get an error which can be very small and that 

can be further reduced by using FEM procedure. 
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Now going further, the energy minimum condition for a 2D case is given below 

 

For the 2D case, you will have 2 independent variables x and y and the g term in the 

above equation is nothing but 𝛿𝜙 (variation in 𝜙). 

Now, for a one dimensional electrostatic problem, we knew the energy density 

expression as 
1

2
𝜖𝐸2, but if you want to find out energy functional for a given PDE, then 

that is done by using the procedure which is explained in this slide. So, now our goal is 

to find functional for a given PDE. 

So, first we will consider Poisson’s equation. When you substitute the unknown f , and 

if that f function is exact and when I say f function is exact, the energy density function 

is known and then when you are substituting the correct potential solution in the above 

eqution then you will get Poisson’s equation in the integrand as shown below. 

 



In the previous case, when we knew the expression of f and when we substituted it in 

the Euler-Lagrange expression (for 1D), we got the corresponding Laplace’sequation. 

Similarly if we know f for the Poisson’s equation, and if you substitute it in the Euler-

Lagrange expression it will reduce to −∇2𝜙 − ℎ = 0 . Now, the same concept is 

summarized below. 

 

If this 𝜙 is the exact solution, then this 𝛿𝐹 = 0 gets exactly satisfied and then that is 

why −∇2𝜙 − ℎ = 0 . 

But in the expression of F, the expression of f is known, but in that, if we substitute 

approximate solution �̃�  which is not exact, then −∇2𝜙 − ℎ ≠ 0 and that will be 

equal to some residue at every point in the domain. So, that is why when you force 

𝛿𝐹 = 0 in the process of energy minimization, what effectively you are forcing is 

∬ 𝑅 𝛿𝜙 𝑑𝑥𝑑𝑦 = 0. 

And this in fact, we will see later for a one-dimensional problem when we approximate 

solution, which is not exact, we get residue and ∬ 𝑅 𝛿𝜙 𝑑𝑥 = 0. Also one more point 

I want to say here is that R has unit of source, it is charge in electrostatics, why? Because 

in case of electrostatics, h in ∇2𝜙 = −ℎ represents charge because Poisson’s equation 

in electrostatics ∇2𝑉 = −
𝜌

𝜖0
.  

So, h is a function of charge although it is 𝜌/𝜖0, but if 𝜖0 is absorbed into the left hand 

side then you can take this h as simply charge right. So, h has the unit of charge. R also 

has the same unit of h because 𝑅 = −∇2𝜙 − ℎ. And charge times potential V is work 

or energy. 

𝛿 of residual energy (R) integrated over the domain is being equated to 0 so that is the 

second interpretation of 𝛿(∬ 𝑅𝑑𝑥𝑑𝑦) = 0 . More about this when we solve a 1D 

problem, there we will see this being enforced in the formulation. 



(Refer Slide Time: 13:44) 

 

 

We again start with the following equation.  

 

The above equation is expanded as given below 

 

 Now, we are splitting the first integral as difference of these 2 terms as given below. 



 

And then the first first term of the above expression is replaced by using divergence of 

a vector (𝛿𝜙
𝜕𝜙

𝜕𝑥
�̂�𝑥 + 𝛿𝜙

𝜕𝜙

𝜕𝑦
�̂�𝑦), because divergence of this vector is the integrand of 

the first term in the above expression.  

Now, we will further simplify the first term. For that, we need to understand a little 

more bit about 𝛿𝐹, the variation in F is given by the following equation. 

𝛿𝐹 =
𝜕𝐹

𝜕𝑢
𝛿𝑢 +

𝜕𝐹

𝜕𝑢′
𝛿𝑢′ 

Here, as I have mentioned to you early, there is no 
𝜕𝐹

𝜕𝑥
𝛿𝑥 term, because 𝛿𝑥 = 0 in this 

variational calculus or the variational procedure. 

Now, consider 𝐹 = (
𝜕𝑢

𝜕𝑥
)

2

= (𝑢′)2and note that (
𝜕𝑢

𝜕𝑥
)

2

 is nothing but (𝑢′)2 . Then 

𝛿(𝑢′)2 is given by the following formula.  

 

And now, the first term is 0, because (𝑢′)2 is not a function of 𝑢, so, the first term is 

equal to 0, only the second term in the right hand side of above summation remains as 

written below. 

𝛿(𝑢′)2 =
𝜕(𝑢′)2

𝜕𝑢′
𝛿𝑢′ = 2𝑢′𝛿𝑢′ 

Now 𝑢′ is replaced by 
𝜕𝑢

𝜕𝑥
 as given below. 

𝛿(𝑢′)2 = 2 (
𝜕𝑢

𝜕𝑥
) 𝛿 (

𝜕𝑢

𝜕𝑥
) 



  

𝛿 (
𝜕𝑢

𝜕𝑥
)

2

= 2 (
𝜕𝑢

𝜕𝑥
) 𝛿 (

𝜕𝑢

𝜕𝑥
) 

Now, the term on the right hand side can be further simplified as  

𝛿 (
𝜕𝑢

𝜕𝑥
)

2

= 2 (
𝜕𝑢

𝜕𝑥
) 𝛿 (

𝜕𝑢

𝜕𝑥
) = 2 (

𝜕𝑢

𝜕𝑥
)

𝜕

𝜕𝑥
(𝛿𝑢) 

The 𝛿 operator can be taken inside the 
𝜕

𝜕𝑥
, because by the definition of 𝛿 it does not 

involve variation with x. Now the above expression can be rearranged as given below. 

𝜕𝑢

𝜕𝑥

𝜕

𝜕𝑥
(𝛿𝑢) =

1

2
𝛿 (

𝜕𝑢

𝜕𝑥
)

2

 

Similarly, the following two terms can be rewritten as given below.  

𝜕𝜙

𝜕𝑥

𝜕

𝜕𝑥
(𝛿𝜙) +

𝜕𝜙

𝜕𝑦

𝜕

𝜕𝑦
(𝛿𝜙) =

1

2
𝛿 (

𝜕𝜙

𝜕𝑥
)

2

+
1

2
𝛿 (

𝜕𝜙

𝜕𝑦
)

2

 

Now, the integral I in the previous slide which is nothing but 𝛿𝐹1 can be written as  

 

And the first term of the integral I in the previous slide is replaced by 

𝛁. [𝛿𝜙
𝜕𝜙

𝜕𝑥
�̂�𝑥 + 𝛿𝜙

𝜕𝜙

𝜕𝑦
�̂�𝑦]  as given below. 

∬ [
𝜕

𝜕𝑥
(𝛿𝜙

𝜕𝜙

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝛿𝜙

𝜕𝜙

𝜕𝑦
)] 𝑑𝑥𝑑𝑦 = ∬ 𝛁. [𝛿𝜙

𝜕𝜙

𝜕𝑥
�̂�𝑥 + 𝛿𝜙

𝜕𝜙

𝜕𝑦
�̂�𝑦] 𝑑𝑥𝑑𝑦 

By invoking the divergence theorem in 2D that we discussed in one of the previous 

lectures, the surface integral of divergence of a vector is replaced by the corresponding 

contour integral as given below.  

∬ 𝛁. [𝛿𝜙
𝜕𝜙

𝜕𝑥
�̂�𝑥 + 𝛿𝜙

𝜕𝜙

𝜕𝑦
�̂�𝑦] 𝑑𝑥𝑑𝑦 = 𝛿 ∮ 𝜙 [

𝜕𝜙

𝜕𝑥
�̂�𝑥 +

𝜕𝜙

𝜕𝑦
�̂�𝑦] . �̂�𝑛𝜕𝛤 



This we have seen in basics of electromagnetics, when divergence theorem is invoked 

for 3D, the volume integral got converted into a closed surface integral. 

Here it is a two dimensional problem, but effectively it is a 3D problem with 𝑑𝑥𝑑𝑦 × 1, 

that means, it is a per unit dimension in z direction. So, in 2D approximation, the open 

surface integral gets replaced by a closed contour integral.  
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Now, we consider this second integral of 𝛿𝐹1  which is given by the following 

expression.  

 

Now for understanding how to evaluate this integral we will consider our standard 

parallel plate capacitor problem geometry as shown in the following figure.  

 



For this capacitor problem, potentials are specified on the segments 1 and 2 and 

homogeneous Neumann boundary conditions are specified on the two vertical segments 

(3 and 4). 

I will explain open and closed surfaces a little later. First, let us understand, this closed 

contour in the above figure which is made up of 4 segments 1, 2, 3 and 4. On segments 

1 and 2, potentials are specified, that means 𝛿𝜙 = 0 because there is no variation in 

𝜙 on these segments. So, 𝛿𝜙 = 0 on segments 1 and 2 of this closed contour of 1, 3, 

2, 4. 

Now, when it comes to segment 3 whose direction is vertically down then 𝜕𝛤 =

𝜕𝛤�̂�𝑛 = −𝜕𝑦�̂�𝑛 . And �̂�𝑛  for this segment 3 is basically −�̂�𝑥 , why? Because 

remember, we obtained this equation by invoking divergence theorem which is applied 

to convert a volume integral to a closed surface integral. But since we are having a 2D 

approximation of the problem, the open surface integral gets converted to a closed 

contour integral. So, now that is why you have the closed contour in the above 

expression, but we should remember in actual 3D case this is a closed surface as shown 

in the above figure. So, it is a closed cubic surface. Now, the normal to the segment 3 

is effectively normal to the surface formed by the segment and the dotted lines in the 

3rd dimension of the above figure.  

We know that normal for a face of any closed surface is always in the outward direction. 

Therefore, for segment 3 the outward normal is −�̂�𝑥 as shown in the figure. So, the 

above expression gets simplified to as given below.  

−𝛿 ∮ 𝜙 [
𝜕𝜙

𝜕𝑥
�̂�𝑥 +

𝜕𝜙

𝜕𝑦
�̂�𝑦] . �̂�𝑥𝑑𝑥 = −𝛿 ∫ 𝜙 

𝜕𝜙

𝜕𝑥
 𝑑𝑦 

The 
𝜕𝜙

𝜕𝑦
 in the right hand side of the above equation will not contribute because    

�̂�𝑦 ∙ �̂�𝑥 = 0. So, only the 
𝜕𝜙

𝜕𝑥
 term will contribute. So, that is why only 

𝜕𝜙

𝜕𝑥
 𝑑𝑦 will 

remain for this contour integral.  

Similarly for segment 4, the corresponding surface is also shown in the figure. This 

surface is also formed by segment 4 and the dotted lines in the third direction. The 

corresponding outward normal will be �̂�𝑥 and then the direction of 𝜕𝛤 be in vertically 



up direction. So, in this case also the contour integral reduces to the equation given 

below.   

−𝛿 ∮ 𝜙 [
𝜕𝜙

𝜕𝑥
�̂�𝑥 +

𝜕𝜙

𝜕𝑦
�̂�𝑦] . �̂�𝑥𝑑𝑥 = −𝛿 ∫ 𝜙 

𝜕𝜙

𝜕𝑥
 𝑑𝑦 

So, again you get the same equation and then here since 
𝜕𝜙

𝜕𝑥
 in both these cases is 0 

because , we imposed homogeneous Neumann condition on the two vertical segments. 

Therefore, we have got these equipotential lines which are normal to the vertical 

surfaces that means that 
𝜕𝜙

𝜕𝑥
 = 0.  

So, that is why the contribution of 
𝜕𝜙

𝜕𝑥
 term is 0 for both segments 3 and 4. So, that is 

why the integrations on these 3 and 4 segments reduce to 0. That is why this whole 

closed contour integral does not contribute in this case of the capacitor. In this problem, 

it does not contribute anything, but in case you have some boundary, wherein some 

non-zero homogeneous Neumann condition is imposed, then this closed contour 

integral will be non-zero and this will be an additional term in the energy expression 

and correspondingly in the final FEM equation (which is a linear system of equations), 

you will get an additional matrix term corresponding to this integral and that has to be 

taken into account. More details about how do we form matrices we will see later as we 

go further in this course. 
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Going further, the expression of F for Poisson’s equation is given below.  

 

It should be noted that the whole expression of 𝛿𝐹1 reduces to the first term in the 

above equation. Because the boundaries are with either homogeneous Neumann 

conditions or Dirichlet conditions as explained in the previous slide.  

Remember, if there are non homogeneous Neumann condition somewhere, then there 

will be an additional term in F1, but in most of the cases what we generally have, for 

example, in the capacitor problem case we will have either homogeneous Neumann 

condition where boundary conditions are not defined or generally we enclose the entire 

problem domain in a box or a rectangle and we specify reference potential as 𝜙 = 0. 

So, in that process, the contour integral will go down to 0 because there is a 𝛿𝜙 term. 

Generally whenever a boundary is there, in most of the problems, we either have 

Dirichlet condition wherein 𝜙 is specified or homogeneous Neumann condition and 

that is why this contour integral will reduce to 0 and only the first term of the above 

integral will remain. 

So, now in this 𝛿𝐹1 you have only one term remaining (given in the above expression) 

and now we take the second term which is simply −2𝜙ℎ. This will be twice because 



here we have taken 
1

2
 as common in the above equation. So, remember this h represents 

the source, in case of electrostatic problems it will be simply 𝜌𝑣/𝜖 . 

Also remember that in the functional expression, the terms involving h or source or any 

constant term or any other term which is not having 𝜙, suppose here in this case, h was 

on the right hand side of Poisson’s equation (∇2𝜙 = −ℎ) and −ℎ gets multiplied by 

𝜙 in the energy expression. 

Now we will apply the same logic to derive functional for the magnetostatic Poisson’s 

equation. For this, the governing partial differential equation is ∇2𝐀 = −𝜇𝐉. And now, 

if we are doing 2 dimensional approximation then we will take the 2D cross section 

perpendicular to the direction of the current. So, in any two dimensional problem, when 

you are analyzing some electrical machine or transformer or any other device with some 

current distribution, you will always find that we take a cross section for 2D analysis 

which is perpendicular to the direction of the current. 

The direction of current will be shown by dot or cross. Always we take a cross-section 

perpendicular to the current and then we approximate it as a 2D problem. So for a 

current carrying conductor whose cross section is in xy plane, the current is in z 

direction as shown in the following figure.  

 

So, the current (I) has only z component. Similarly, magnetic vector potential (A) will 

also have only z component because the direction of A is the direction of I. Effectively 

what is happening, the direction of A gets fixed, so only the magnitude of A needs to 

be determined at every point in the domain. This now becomes a scalar formulation 

because the direction of unknown vector potential is already known, so we have to find 

out only the magnitude of A at every point.  



That is the advantage of using the magnetic vector potential formulation in 2 

dimensional magnetic field problems, because the direction of current and therefore, 

direction of magnetic vector potential gets fixed, because we take the cross section 

perpendicular to the current and the direction of A becomes fixed in the direction of 

current.  

So, only the magnitude of A needs to be determined at all points in the domain. Once 

the magnitude of Az is known, you can find out 𝐵𝑥 and 𝐵𝑦. As the current is in z 

direction, B will be in xy plane, because the flux lines are going to be as indicated by 

the contours in the above figure. So, x and y components of B can be determined from 

A by using the expression 𝐁 = ∇ × 𝐀. How do you do that we will see later when we 

get into finite element analysis. Thank you. 
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