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FEM – Variational Approach 

Welcome to 11th lecture. And from this lecture we are getting into finite element analysis.  
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There are two distinct approaches in finite element method, one is the variational approach, which 

is  an energy minimization approach and it is more physical because we are minimizing the energy 

to determine the solution. And why we minimize energies? Basically, fields would always get 

distributed in a given problem domain such that the corresponding energy stored in the domain is 

minimized. That is one of nature's laws.  

So, the fields will get distributed such that the corresponding energy content is minimized. 

Weighted residual method is another approach, wherein we minimize errors because of 

approximating unknown potentials. We will  discuss the weighted residual approach little later. 

So, in the first two sets of lectures, we will concentrate on the variational method, which is an 

energy minimization approach.  



Now consider  the parallel plate capacitor problem (shown in the following figure) to understand 

what is this energy minimization and how the field distribution corresponding to energy minimum 

condition occurs. So, as discussed earlier, even though we are considering this problem in 

electrostatics, you will find that we are not considering the charges on the plate.  

 

Always remember in electromagnetics the basic entity of source is charge only, when it is moving, 

then it is current  and it can be DC or AC. So, the basic source is charge or current. But here in the 

above figure, you may wonder that we are not representing charges, but they are represented by 

the corresponding boundary conditions. In the above figure, the top plate of the capacitor is at 100 

V and the bottom plate is at 0 V.  

Now again for simplicity, we are neglecting the end effects as discussed in one of the previous 

lectures. We model the capacitor as a rectangular geometry and the homogeneous Neumann 

conditions (
𝜕𝑉

𝜕𝑧
= 0) on the two vertical boundaries. With these conditions, a uniform field 

condition can be achived because end effects are neglected and everywhere the field is uniform.  

So, electric field intensity can be simply calculated as 
100 V

10 m
because 10 m is the gap between the 

two plates whose potential difference is 100 V. So, the magnitude of E field everywhere inside the 

above capacitor is  10 V/m . And the energy is calculated by using the following expression.  

 

  



And now here the potentials are varying with x. Remember when we impose homogeneous 

Neumann condition, effectively we are making the plates as infinite in the z direction. In the y 

direction, i.e, into the paper, it is infinite. So, effectively we are reducing the dv as 𝑑𝑥 × 1 × 1. 

Like we saw in basics, when we did 2D approximation, we always said 𝑑𝑆 × 1 which represents 

per metre depth. And also we saw the parameters are calculated for per metre depth. So, here, you 

are assuming infinite in y and z, and considering per metre depth in both directions.  

So that is why this problem will be essentially reduced to 1D. And then we also know for this 

problem, the solution (potential distribution) is the equi-spaced, equi-potential lines as shown in 

the above figure. This solution should lead to the minimum energy condition. Now, we need to 

prove that the equi-spaced, equipotential lines indeed lead to the minimum energy condition.  

We will consider a counter argument and then prove it. Let us assume that the solution given in 

the above figure does not lead to the energy minimum condition. Suppose, if you shift the 90 V 

line in the above figure to the dotted line as shown, then the solution is not equi-spaced lines. But 

now we will calculate the energy in the region up to the 80 V line.  

In the previous case, when it is the exact solution, the energy is proportional to 102 + 102 =

200, because E is 10 V/m in the whole capacitor region. But in the dotted line case, since this 

dotted line is taken above the position of 90 V line (exact solution), the electric field intensity will 

be more.  

And I have assumed that as 11 V/m . And in this case the energy in the region between 80 V and 

90 V, the electric field intensity will be lower, which I am considering as say 9 V/m. Now you can 

see the energy is proportional to 112 + 92 = 202. So, that is why the dotted case would represent 

higher energy than the exact solution. In a way, we have proved that the equi-spaced equipotential 

lines lead to the minimum energy condition.  
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So, you consider the other case (lead to ground problem) which we have been seeing previously. 

In this case, the equipotential lines are going to be like the way shown in the above slide. We have 

seen this distribution in the previous lecture. Now, the equi-potential lines in the above figure are 

not equi-spaced. So, the exact solution of this problem would correspond to equipotential lines, 

which we are not equi-spaced. Because lines which are closer to the conductor are more closely 

spaced as compared to equipotential lines which are towards the ground electrode, which are 

sparsely spaced.  

In this case, the exact solution corresponds to this non equi-spaced, equipotential lines and if you 

assume equi-spaced, equipotential lines then you will calculate higher energy than the exact 

solution which is non-uniform case and not equi-spaced lines.   

In this case, equi-potential lines can be obtained from FEM solution and that is not very 

straightforward to calculate analytically. In the previous example of the parallel plate capacitor, it 

was very simple to prove the concept of energy minimization. But here it would be difficult, but I 

hope intuitively you understood why energy minimum condition is the exact solution from the 

previous capacitor problem.  
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Now, let us go further. We are again considering a source free electrostatic problem because we 

are not considering charges on the capacitor plates. But the source of charges is being represented 

by corresponding boundary conditions on the top and bottom plates and the corresponding energy 

can be calculated by using the following equation. 

 

Now before going into the details of how to solve this electrostatic problem, let us see the two 

most standard partial differential equations. PDE stands for partial differential equations. So we 

will be considering three typical cases (defined by the following equations) for low-frequency 

electromagnetics which are used when we are dealing with electrical machines and equipment.  

 

The first equation (∇2𝐀 = −𝜇𝐉) is used for magnetostatic analysis. Now again you are very 

comfortable with this equation and it is Poisson’s equation for magnetostatics, where A is the 

magnetic vector potential and J is the current density. The second equation (∇2𝐀 − 𝜇𝜎
𝜕𝐀

𝜕𝑡
=



−𝜇𝐉) also we have seen and had some discussion about this equation. I have also explained about 

the term 𝜇𝜎
𝜕𝐀

𝜕𝑡
. This is the induced eddy current term. Because 

𝜕𝐀

𝜕𝑡
 is the induced electric field 

intensity. So, 𝜎
𝜕𝐀

𝜕𝑡
 is J induced.  

So, that is why the units are matching. The units of all terms in the second equation have same 

unit.  ∇2𝐀 = −𝜇𝐉  is used if it is a static case and  ∇2𝐀 − 𝜇𝜎
𝜕𝐀

𝜕𝑡
= −𝜇𝐉  is for a general transient 

case. In the two cases, 𝜇𝐉 is the source current term and 𝜇𝜎
𝜕𝐀

𝜕𝑡
  is representing the eddy current. 

And as I mentioned in that previous lecture when you bring −𝜇𝜎
𝜕𝐀

𝜕𝑡
  to the right hand side, the 

sign of the eddy current term becomes plus and as it should be plus because the signs of source 

current and induced eddy current should be opposite.   

But their phase difference will not be exactly 180o because all the quantities in the equation will 

be phasors and angle will get decided by many other quantities also. But maybe a little later we 

will discuss this. But in general, the sign should be opposite. And now if you are dealing with time-

harmonic case that means all the quantities are varying sinusoidally with time then you can convert 

𝑑

𝑑𝑡
 as 𝑗𝜔 and then you get the following equation where now A and J are phasors.  

 

I have not represented phasor quantities by another symbol for sake of brevity and simplicity. But 

remember in this equation, A and J they will be phasors. Now, let us go further.  

Now we are going back to the electrostatic problem. We have to minimize the following. 

 

 So, in the remaining course, what we will do is, we will start with electrostatics. Then we will go 

to magnetostatic fields, time-harmonic, axi-symmetric, permanent magnets, transients, forces, 

coupled circuit field and in that way, we are going to proceed in this course by increasing 



complexity. Electrostatics is probably the simplest thing to analyse. So, we are starting with 

electrostatics. So, you are minimizing the energy in electrostatics. Also note that for 1D 

electrostatics 𝑑𝑣 = 𝑑𝑥 × 1 × 1.  

 For a standard capacitor problem, we know that the energy is ∫
1

2
𝜖𝐸2 𝑑𝑣 because 

1

2
𝜖𝐸2 is energy 

density. And that is why we started directly by assuming the expression of energy (given in the 

above equation) that has to be minimized. But in general, for a given partial differential equation 

how do we derive the expression of energy and how the corresponding energy is minimized?  

Later on, we will see how do we find the corresponding energy functionals that need to be 

minimized for each of the above discussed partial differential equations. So, then we are coming 

to an important concept what is known as functional. Now, functional is the expression for energy. 

In variational calculus, we term energy as functional 𝐹(𝜙) where 𝜙 is potential.  

That is the reason in the previous lectures on the basics of electromagnetics, we called flux by 𝜓 

otherwise it will interfere with this symbol of potential (𝜙). So, here 𝜙 is the potential. It could be 

electric potential, magnetic potential or any other potential. In this case, if you are dealing with 

electrostatics, 𝜙 will be electric potential  V.   

So, in this case, the functional in a one-dimensional problem is defined in general form, from P1 

to P2, as given in the following equation and the potential is varying with x  

 

Potential may vary in any way, I have just shown by a straight line in the following figure,  

 



But it can vary depending upon the boundary and source conditions. Also, the functional energy 

can be in general represented by 𝑓(𝑥, 𝜙, 𝜙′) and 𝜙′ is derivative. For example, if you consider this 

functional for electrostatic case, only 𝑉′ is in the functional (or energy) because E is nothing but 

𝑑𝑉

𝑑𝑥
.  

For this case in energy functional only 𝜙′ or 𝑉′ term will appear. But in general, it will not be so. 

It will be a function of x, 𝜙, 𝜙′. For example, in case of a Poisson’s equation, you will get it as a 

function of 𝜙, that will see later. So, there will be some term in the functional expression which 

will be a function of 𝜙.  

In this equation, you have one independent variable (x) and one dependent variable (𝜙). Because, 

you have Laplace’s equation, only 𝜙′ appears in the functional. We will go further.  
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Now, we will go further and discuss more about the functional F and the corresponding variational 

calculus. We know the total differential of a function F is defined as 

 

But when it comes to variation in F (which is defined in the following equation), we are not varying 

F with x. That is why we are saying 𝛿𝑥 = 0.   

  

What it means? The energy F is minimized by varying the potential at each point in the domain 

and for one combination of potentials at various points we will get minimum energy. Now in the 

following figure of a one dimensional domain, there are so many points in between the points P1 

and P2. 

 



 

At each of these points, we will vary the potential values. For example, we are varying potential 

from some initial guess value (𝜙) to a higher value (𝜙 + 𝛿𝜙). So, at every point, we are varying 

the potential, but we are not varying x. We are not varying potential as a function of x. At every x, 

we vary potential. That is why, here we are varying potential which is given by 𝛿𝜙. We are doing 

variation in 𝜙. Similarly, as 𝜙 is varied, 𝜙′ also will vary, because 𝜙 is a function of x. So, again 

there will be variation in 𝜙′. So, as you vary potential, there will be variation in potential derivative 

also. But we are not varying x and that is why here 𝛿𝑥 = 0. That is why  
𝜕𝐹

𝜕𝑥
𝛿𝑥 = 0 because 𝛿𝑥 =

0.  

So this is the main concept of variational calculus. Again remember, 𝛿𝜙 is variation in 𝜙 at a fixed 

x. In the above figure, various 𝜙 distributions that are attempting to minimize the functional F 

(which is the energy) are given. Now, here let us see the graph in the following figure which 

represents variation of F with  𝜙.  

 

Now, remember in above figure, 𝜙 and 𝜙 + 𝛿𝜙 are a set of values of potentials at various points 

in the problem domain.  

Suppose if there are say hundred points in the domain and we calculate the energy associated with 

hundred points, so that corresponding total energy is given in the vertical axis of the figure,  and 

the 𝜙 will correspond to a vector of the hundred values. So, all those hundred values will decide 



the energy of that one-dimensional region. So, now if you change the potentials at those hundred 

points, you will get a new set of values of potentials that will give another curve of potential versus 

x.  

And that may give some other energy value. So, now when you are approaching the minimum 

energy point, if you change the potential values at all the nodes by some small value, it is not going 

to lead to any appreciable change in the total energy content. That means we have reached the 

minimum. So that is the meaning of the statement 𝛿𝐹 = 0. Now the 𝛿𝐹 can be represented by the 

following equation. 

 

 That means when we are near the minimum energy point, then the change in energy with variation 

in 𝜙 is 0. And that corresponding 𝜙 is the solution. Now let us further expand the above equation 

for a one-dimensional domain between P1 and P2  as given in the following equation.  

 

Now again I just want to repeat f is just a function of 𝑥, 𝜙, 𝜙′ and integration of f with x is F, so 

functional F is function of function f. So, again the difference between F and f  is highlighted. 

Now, if we further simplify this expression by using the standard Taylor series expression 

(𝑓(𝑥 + ℎ) = 𝑓(𝑥) + ℎ𝑓′(𝑥)) and remembering that in this case there are two variables 

(𝜙, 𝜙′and 𝛿𝑥 = 0), the following expression is obtained. 

 

 Now, the second integral can be written as indicated in the above equation.   



And now 𝑔 is 𝛿𝜙, so g is a function of x, because this variation of 𝜙 at every point is a function of 

x as indicated in the following figure. 

 

Because, as shown in the above figure, in the region near to the boundary points the variation is 

small and in the middle region, it is higher.  So, the variation of 𝜙 is a function of x. So that is why 

𝑔 is a function of x.   

And then the second term of the second integral is split by using integration by parts as shown in 

the above equation. Now the above equation is simplified as given below. 

 

And the second term becomes 0. Because when that term is evaluated at boundaries, it will reduce 

to 0 because g is 0 at the boundaries  as the potentials are already fixed at the two boundary points. 

So, the second term becomes 0 and then the expression 𝛿𝐹 = 0 is simplified as the following 

equation.   

 

So, when the above integral is equated to 0, we are minimizing the corresponding energy. So, if 

this integral has to be 0 and if energy has to be minimum, effectively the integrand has to be 0 as 

given below, because for any arbitrary 𝑔(𝑥) the whole integral can be 0 only if the integrand is 0 

which leads to Euler-Lagrange equation. And the bracketed term on the left hand side is called as 

Euler-Lagrange expression.  
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Now, let us see an application and an example to understand what we just now saw in a little bit 

more depth. Let us again take a parallel plate capacitor problem and we know the functional for 

that is as given below. 

 

 And it is one dimensional (fringing is neglected) that is why 𝑑𝑣 reduces to 𝑑𝑥 × 1 × 1. And E is 

nothing but 
𝑑𝑉

𝑑𝑥
. And then 𝑓 =

1

2
𝜀 (

𝑑𝑉

𝑑𝑥
)

2

.  

Then ∫ 𝑓𝑑𝑥 is nothing but F (functional). Now, suppose if we want to solve this capacitor problem 

and find out the field distribution, we will assume some potential distribution (V). If that potential 

distribution V is the exact solution and then when it is substituted in this Euler-Lagrange equation, 

the energy due to the potential distribution will be minimized because the solution is known and it 

is exact.  



So, when you substitute the exact solution V in Euler-Lagrange expression, you will get it equal to 

0. And that is what we are assuming that this V is known and it is the exact solution. And when it 

is substituted in the Euler-Lagrange expression, we will get 0 on the right hand side. And then if 

that energy gets minimized in that way and then this V is the exact solution. Now, let us see when 

you substitute the above expression of f  in Euler-Lagrange equation and then further simplify as 

given below. 

 

You will get 
𝑑2𝑉

𝑑𝑥2
= 0 which is Laplace’s equation in 1D. So, when the exact solution was known 

to us and we substituted the corresponding f in Euler-Lagrange expression, we will get the 

minimum energy condition. And therefore, the right hand side of the equation will be zero 

satisfying Euler-Lagrange equation and this further leads to 
𝑑2𝑉

𝑑𝑥2
= 0 which is Laplace equation.  

So, again I want to highlight this. Here f was only function of 𝑉′ =
𝑑𝑉

𝑑𝑥
. But in general, it can be a 

function of x, V and 𝑉′. We will see such examples in some other cases later. Thank you. 
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