Fundamentals of Power Electronics Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bengaluru

Lecture – 42 Datasheet of few IC regulators

(Refer Slide Time: 00:27)

Let us look at some commercial linear regulators. The mu A78 series regulator is a very popular and commonly available linear regulator. It is a 3-pin you see here 3-pin, 3-terminal linear regulator. You have a input the output and the common pin very popular, and it comes in various fixed outputs 78xx or 00 series. If you get 7805, it is a 5 volt regulator. If it is 7808, it is a 8 volt regulator; 7810 7812, 12 volt; 7815, 15 volt regulator so on.

(Refer Slide Time: 01:17)

 3-Terminal Regulators Output Current up to 1.5 A Internal Thermal-Overload Protection KC (TO-220) PACKAGE (TOP URW) 	High Power-Dissipation Capability Internal Short-Circuit Current Limiting Output Transistor Safe-Area Compensation " KTE PACKAGE (TOP VIEW)
COMMON COMMON INPUT KCS (TO-220) PACKAGE (TOP VIEW)	
description/ordering information	
This series of fixed-voltage integrated-circuit vol	tage regulators is designed for a wide range of application

Very popular output currents up to 1.5 amps, and it is available in TO-220 package.

(Refer Slide Time: 01:27)

TJ	V _{O(NOM)} (V)	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SID
		POWER-FLEX (KTE)	Reel of 2000	µA7805CKTER	µA7805C
	5	TO-220 (KC)	Tube of 50	µA7805CKC	11479050
		TO-220, short shoulder (KCS)	Tube of 20	µA7805CKCS	μ478050
		POWER-FLEX (KTE)	Reel of 2000	µA7808CKTER	µA7808C
	8	TO-220 (KC)	Tube of 50	µA7808CKC	
		TO-220, short shoulder (KCS)	Tube of 20	µA7808CKCS	µA7808C
	10	POWER-FLEX (KTE)	Reel of 2000	µA7810CKTER	µA7810C
000 1- 10500	10	TO-220 (KC)	Tube of 50	µA7810CKC	µA7810C
0.010 155.0		POWER-FLEX (KTE)	Reel of 2000	µA7812CKTER	µA7812C
	12	TO-220 (KC)	Tube of 50	µA7812CKC	
		TO-220, short shoulder (KCS)	Tube of 20	µA7812CKCS	μΑ/8120
		POWER-FLEX (KTE)	Reel of 2000	µA7815CKTER	µA7815C
	15	TO-220 (KC)	Tube of 50	µA7815CKC	
		TO-220, short shoulder (KCS)	Tube of 20	µA7815CKCS	WA7815C
		POWER-FLEX (KTE)	Reel of 2000	µA7824CKTER	µA7824C
	24	TO-220 (KC)	Tube of 50	µA7824CKC	µA7824C

See here different 78x x series this is a five volt regulator this a 8 volt regulator, a 12 volt regulator, it is the 15 volt regulator, 24 volt regulator so on. So, these are constant voltage regulators just 3-terminals, you put this 3-terminals no other extra components and you are in business.

(Refer Slide Time: 01:50)

Julei wise noteu)		uuio, v = 1	u v, 10	= 500	mA	unie
	TEST CONDITIONS	- +	μ	A7805C		
PARAMETER	TEST CONDITIONS	IJ	MIN	TYP	MAX	
Output unline	IO = 5 mA to 1 A, VI = 7 V to 20 V,	25°C	4.8	5	5.2	v
Output voltage	P _D ≤15 W	0°C to 125°C	4.75		5.25	1 °
lanut veltere regulation	VI = 7 V to 25 V	0590		3	100	
input voitage regulation	VI = 8 V to 12 V	2510		1	50	
Ripple rejection	VI = 8 V to 18 V, f = 120 Hz	0°C to 125°C	62	78		dB
Output units and a line	IO = 5 mA to 1.5 A	0590		15	100	m
Output voltage regulation	IO = 250 mA to 750 mA	25%		5	50	1 mv
Output resistance	f = 1 kHz	0°C to 125°C		0.017		Ω
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C		-1.1		mV/۹
Output noise voltage	f = 10 Hz to 100 kHz	25°C		40		μV
Dropout voltage	I _O = 1 A	25°C		2		V
Bias current	-	25°C		4.2	8	mA
	VI = 7 V to 25 V				1.3	
Bias current change	IO = 5 mA to 1 A	0°C to 125°C			0.5	mA
Short-circuit output current	-	25°C		750		mA

In the data sheet of the 78xx series you will see some of the input important parameters output voltage minimum 4.8 to 5.2. Now, the input voltage regulation ok, so for a variation from 7 to 25 volts, 3 to 100, you should map it into the regulation coefficient that we just now discussed. Ripple rejection, output voltage regulation that is with respect to the load. There is a temperature coefficient of output voltage with respect to variation in temperature ok.

(Refer Slide Time: 02:30)

Ripple rejection	VI = 8 V to 18 V, f = 120 Hz	0°C to 125°C	62 78	dB
Output voltage regulation	IO = 5 mA to 1.5 A	25%	15 1	00 mV
Output voltage regulation	IO = 250 mA to 750 mA	250	5	50
Output resistance	f = 1 kHz	0°C to 125°C	0.017	Ω
Temperature coefficient of output voltage	I _O = 5 mA	0°C to 125°C	-1.1	mV/%
Output noise voltage	f = 10 Hz to 100 kHz	25°C	40	μV
Dropout voltage	IO = 1 A	25°C	2	V
Bias current		25°C	4.2	8 mA
Diag aurorat alagana	VI = 7 V to 25 V	0°C to 125°C	1	.3
bias current change	$I_{O} = 5 \text{ mA to 1 A}$		° (.5
Short-circuit output current		25°C	750	mA
Peak output current		25°C	2.2	A
account separately. All characteristics are	ion emperature as close to the amolent temper measured with a 0.33-µF capacitor across the	input and a 0.1-	. F capacitor across th	e output.

These are the regulation coefficients that would matter, and you will have to use these in effectively designing your regulators.

	PRECISION VOLTAGE REGULATOR
	SLVS057D - AUGUST 1972 - REVISED JULY 199
 150-mA Load Current Without External Power Transistor 	D OR N PACKAGE (TOP VIEW)
 Adjustable Current-Limiting Capability 	
 Input Voltages up to 40 V 	
 Output Adjustable From 2 V to 37 V 	CURR SENS 3 12 VCC+
 Direct Replacement for Fairchild µA723C 	IN- [] 4 11 [] V _C
	IN+ 🛛 5 10 🛛 OUTPUT
description	
The µA723 is a precision integrated-circuit voltage regulator, featuring high ripple rejection, excellent input and load regulation, excellent temperature s of a temperature-compensated reference-voltage amplifier an adjustable-output current limiter.	V_{CC} $(\frac{7}{a} $ $B $ NC tability, and low standby current. The circuit consist , an error amplifier, a 150-mA output transistor, an
The µA723 is designed for use in positive or negative pow	er supplies as a series, shunt, switching, or floatin

(Refer Slide Time: 02:40)

Another versatile precision regulator available in the market is the 7803.7 Another versatile precision regulator available in the market is the muA723. It comes in a d package and few other packages as well.

(Refer Slide Time: 03:07)

	32430370 - AUGUST 1972 - REVISED JULT 199
 150-mA Load Current Without External Power Transistor 	D OR N PACKAGE (TOP VIEW)
 Adjustable Current-Limiting Capability 	NC T INC
Input Voltages up to 40 V	CUBBLIM 1 2 12 DEBED COMP
Output Adjustable From 2 V to 37 V	CUBB SENS I 3 12 VCC.
Direct Benlacement for Eairchild UA723C	
description	REF 6 9 VZ
The µA723 is a precision integrated-circuit voltage regulator, featuring high ripple rejection, excellent input and load regulation, excellent tempera of a temperature-compensated reference-voltage an an adjustable-output current limiter.	ature stability, and low standby current. The circuit consists mplifier, an error amplifier, a 150-mA output transistor, and
The µA723 is designed for use in positive or negativ regulator. For output currents exceeding 150 mA, a Figures 4 and 5.	e power supplies as a series, shunt, switching, or floating additional pass elements can be connected as shown in
The μA723C is characterized for operation from 0°C	C to 70°C.
	OPTIONS

It is a 14 pinned IC. Of course, many of them are not connected, but you will see that the internal block diagram of this regulator is very similar to the discrete regulator, series regulator that we discussed.

(Refer Slide Time: 03:23)

And you will see that many of the features that we have discussed is already implemented in IC form in this regulator. And you can make the best use of it.

(Refer Slide Time: 03:38)

recommended operating c	onditions					
				MIN	MAX	UNI
Input voltage, VI				9.5	40	V
Output voltage, VO						V
Input-to-output voltage differential, V(c-vo			3	38	V
Output current, IO					150	mA
	g free-air temperature range, T _A µA723C					
Operating free-air temperature range electrical characteristics a	[⊤] A t specified free-air temperature (s	see Notes 3 a	nd 4)	0	70	-0
Operating free-air temperature range	TA t specified free-air temperature (s	see Notes 3 a	ind 4)	µA723C	70	-0
Operating free-air temperature range electrical characteristics a PARAMETER	TA t specified free-air temperature (s TEST CONDITIONS	see Notes 3 a	nd 4)	μ Α723C ΤΥΡ	MAX	UNI
Operating free-air temperature range electrical characteristics a PARAMETER	TA t specified free-air temperature (s TEST CONDITIONS VI = 12 V to VI = 15 V	see Notes 3 a	nd 4)	μ Α723C ΤΥΡ 0.1	70 MAX 1	UNI
Operating free-air temperature range electrical characteristics a PARAMETER Input regulation	TA t specified free-air temperature (s TEST CONDITIONS VI = 12 V to VI = 15 V VI = 12 V to VI = 40 V	5ee Notes 3 a T_A 25°C 25°C	nd 4) MIN	0 HA723C TYP 0.1 1	70 MAX 1 5	UNI mV/
Operating free-air temperature range electrical characteristics a PARAMETER Input regulation	TA t specified free-air temperature (s TEST CONDITIONS VI_1 = 12 VID VI_1 = 15 V VI_1 = 12 VID VI_2 = 40 V VI_1 = 12 VID VI_2 = 15 V	TA 25°C 25°C 0°C to 70°C	md 4)	0 HA723C TYP 0.1 1	70 MAX 1 5 3	UNI mV/
Operating free-air temperature range electrical characteristics a PARAMETER Input regulation Bipele raisetion	TA t specified free-air temperature (s TEST CONDITIONS VI = 12 V to VI = 15 V VI = 12 V to VI = 40 V VI = 12 V to VI = 15 V VI = 12 V to VI = 15 V I = 50 Hz to 10 kHz, Cref = 0	μΑτ see Notes 3 a T _A 25°C 25°C 0°C to 70°C 25°C	nd 4)	0 TYP 0.1 1 74	70 MAX 1 5 3	UNI mV/
Operating free-air temperature range electrical characteristics a PARAMETER Input regulation Ripple rejection	$\begin{tabular}{ c c c c c } \hline T_{A} & $$$ t specified free-air temperature (s $$$ t specified free-air temperature (s $$$ v $$ t specified free-air temperature (s $$$ v $$ t specified free air temperature (s $$$ v $$ t specified free air temperature (s $$$ v $$ t specified free air temperature (s $$ v $$ t specified free air temperature (s $$ v $$ t specified free air temperature (s $$ v $$ t specified free air temperature (s $$ v $$ t specified free air temperature (s $$ v $$ t specified free air temperature (s $$ v $$ t specified free air temperature (s $$ v $$ t specified free air temperature (s $$ v $$ t specified free air temperature (s $$ v $$ t specified free air temperature (s $$ v $$ t specified free air temperature (s $$ v $$ specified free air temperature (s $$ v $$ v $$ t specified free air temperature (s $$ v $$ t specified free air temperature (s $$ v $$ t specified free air temperature (s $$ v $$ t specified free air temperature (s $$ v $$ v $$ t specified free air temperature (s $$ v $$ v $$ t specified free air temperature (s $$ v $$ t specified free air temperature (s $$ v $$ v $$ t specified free air temperature (s $$ v $$ v $$ t specified free air temperature (s $$ v $$ v $$ t specified free air temperature (s $$ v $$ v $$ t specified free air temperature (s $$ v $$ v $$ t specified free air temperature (s $$ v $$ v $$ t specified free air temperature (s $$ v $$ v $$ t specified free air temperature (s $$ v $$ v $$ t specified free air temperature (s $$ v $$ v $$ t specified free air temperature (s $$ v $$ v $$ v $$ t specified free air temperature (s $$ v $$ t specified free air temperature (s $$ v $$	μAi see Notes 3 a T _A 25°C 0°C to 70°C 25°C 25°C 25°C	nd 4) MIN	0 A723C TYP 0.1 1 74 86	70 MAX 1 5 3	UNI mV/
Operating free-air temperature range electrical characteristics a PARAMETER Input regulation Ripple rejection Output regulation	TA t specified free-air temperature (s TEST CONDITIONS VI = 12 V Io VI = 15 V VI = 12 V Io VI = 40 V VI = 12 V Io VI = 40 V VI = 12 V Io VI = 15 V I = 50 HZ to 10 kHz, Cref = 0 F = 50 HZ to 10 kHz, Cref = 5 µF	TA 25°C 25°C 0°C to 70°C 25°C 25°C 25°C 25°C 25°C 25°C 25°C 25°C 25°C	nd 4) MIN	1 1 1 1 1 1 1 1 1 1 1 1 1 1	70 MAX 1 5 3	mV/

Here are some data sheet values, input voltage 9.5 to 40 volts max. So, let us stay within that for an output voltage. See 723 is a variable precision regulator, you can set for

different output voltage from 2 to 37 volts. Input-output differential voltage this is an important parameter, so not exceed input-output differential voltage of 38 volts, and you should keep a minimum of 3 volts. And you have a 150 milliamp output current possibility.

(Refer Slide Time: 04:13)

DADAMETER	TEAT CONDU		_	1	A723C		
PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	UNIT	
	V _I = 12 V to V _I = 15 V		25°C		0.1	1	
Input regulation	VI = 12 V to VI = 40 V		25°C		1	5	mV/\
	VI = 12 V to VI = 15 V		0°C to 70°C			3	1
Pinterio de	f = 50 Hz to 10 kHz,	C _{ref} = 0	25°C		74		10
Ripple rejection	f = 50 Hz to 10 kHz,	C _{ref} = 5 µF	25°C		86		dB
Output and dalian			25°C		-0.3	-2	
Output regulation			0°C to 70°C			-6	mv/\
Reference voltage, Vref			25°C	6.8	7.15	7.5	V
Standby current	VI = 30 V,	IO = 0	25°C		2.3	4	mA
Temperature coefficient of output voltage [®]			0°C to 70°C		0.003	0.015	%/°C
Short-circuit output current	R _{SC} = 10 Ω,	V _O = 0	25°C		65		mA
O test science have	BW = 100 Hz to 10 kHz,	C _{ref} = 0	25°C		20		
Output noise voitage	BW = 100 Hz to 10 kHz,	Cref = 5 µF	25°C		2.5		μν

Here to look at the regulation coefficients input regulation. One typically 1 and maximum of 5 millivolt per volt, ripple rejection, output regulation, and you have the temperature coefficient output voltage. Now, these are the important parameters that you should consider in doing your design.

(Refer Slide Time: 04:37)

Look at this, this is a typical circuit given in the data sheet for the 723 regulator. So, this is where unregulated V i is given. And internally reference is generated; you do not need to put an external zener. So, internal reference can be used and given to the plus terminal of the op amp internal op amp. Even the op amp is internal, and to the minus terminal you will give the output that is fed back. And there is a facility to add RSC short circuit protection or the current limit through this across these terminals when you have the current SENS. So, this is a typical case what we discussed in the discrete version.

(Refer Slide Time: 05:26)

LM 723 also provides you with facility to provide an output transistor, transistor on the output side to provide a current boost. Let us say this internal transistor is capable of taking 150 milliamps, and you want 1 amp at the output load current you can put a current boost and then increase the current capability.

(Refer Slide Time: 05:51)

Observe again from the data sheet of muA 7 723, they have implemented the fold back current limiting. The transistors are internal. The resistance you have to put external, and you see the fold back current limiting operation.

(Refer Slide Time: 06:13)

1	INSTRUMENTS	SLVS044X	-SEPTEMBER 1997-	LM317 -REVISED SEPTEMBER 2016			
	LM317 3-Termina	Adjustable Regul	ator				
ī	Features	3 Descriptio	n				
2	Output Voltage Range Adjustable From 1.25 V to 37 V Output Current Greater Than 1.5 A Internal Short-Circuit Current Limiting Thermal Overload Protection Output Safe-Area Compensation Applications	3 Description The LM317 device is an adjustable three-terminal positive-voltage regulator capable of supplying more than 1.5 A over an output-voltage range of 1.25 V to 37 V. It requires only two external resistors to set the output voltage. The device features a typical line regulation of 0.01% and typical load regulation of 0.1%. It includes current limiting, thermal overload protection, and safe operating area protection. Overload protection remains functional even if the ADJUST terminal is disconnected.					
	DLP: 3D Biometrics Hyperspectral Imaging		Device Information	ation ⁽¹⁾			
	Optical Networking, and Spectroscopy	PART NUMBER	PACKAGE	BODY SIZE (NOM)			
	DVR and DVS	LM317DCY	SOT-223 (4)	6.50 mm × 3.50 mm			
	Desktop PC	LM317KCS	TO-220 (3)	10.16 mm × 9.15 mm			
	Dinital Signage and Still Camera	LM317KCT	TO-220 (3)	10.16 mm × 8.59 mm			

LM317 is another 3-terminal adjustable regulator. I will discuss this a bit more in detail later. Another version of LM317 called the LM350 is also a 3-terminal regulator. LM317 has 1.5 amp output current rating, whereas LM350 has 3 amp rating. So, they are powerful regulators for quite reasonable amount of power.

(Refer Slide Time: 06:46)

Here too you have just 3-terminals, the input, output and the adjust. There is a fixed, there is a fixed voltage between the output and the adjust and that is used as the reference voltage and that is what is used for at achieving adjustable output voltage regulator.

(Refer Slide Time: 07:06)

over recommended rang	es of operating virtual ju	Inction temperature	(unless otherwise n	otea)			
PARAMETER	TE	ST CONDITIONS ⁽¹⁾	7. 0510	MIN	ТҮР	MAX	UNIT
Line regulation ⁽²⁾	V ₁ - V _O = 3 V to 40 V		T _J = 25°C		0.01	0.04	%/V
			$T_J = 0^{\circ}C$ to $125^{\circ}C$		0.02	0.07	
	$C_{ADJ}^{(3)} = 10 \ \mu F,$		V ₀ ≤5 V			25	mV
Load regulation	I _O = 10 mA to 1500 mA	1j = 25 0	V ₀ ≥5 V		0.1	0.5	%Vo
Load regulation		T _J = 0°C to 125°C	V ₀ ≤ 5 V		20	70	mV
		•	V ₀ ≥5 V		0.3	1.5	%Vo
Thermal regulation	20-ms pulse, $T_J = 25^{\circ}C$				0.03	0.07	%V _O /W
ADJUST terminal current					50	100	μA
Change in ADJUST terminal current	$V_{\rm I}~-V_{\rm O}$ = 2.5 V to 40 V, I	$P_{D} \le 20 \text{ W}, I_{O} = 10 \text{ m/}$	A to 1500 mA		0.2	5	μΑ
Reference voltage	$V_{I} - V_{O} = 3 V \text{ to } 40 V, P_{C}$	o ≤ 20 W, I _O = 10 mA	to 1500 mA	1.2	1.25	1.3	V
Output-voltage temperature stability	$T_J = 0^{\circ}C$ to $125^{\circ}C$				0.7		%Vo
Minimum load current to maintain regulation	V ₁ - V ₀ = 40 V				3.5	10	mA
	$V_{I} - V_{O} \le 15 V$,	P _D < P _{MAX} ⁽⁴⁾		1.5	2.2		
Maximum output current	$V_{1} - V_{0} \le 40 V$,	P _D < P _{MAX} ⁽⁴⁾ ,	T _J = 25°C	0.15	0.4		A
RMS output poise voltage		T 0500	-		0.000		0/1/

In the electrical characteristics of the data sheet you see for the LM317 line regulation aspect, it is given here, terms of percent per volt, you have the load regulation given here, thermal regulation. So, all these aspects are given, and you will have to map it to the regulation equation that we discussed.

(Refer Slide Time: 07:36)

	20-ms pulse,	T _J = 25°C			0.03	0.07	%Vo/W
JUST terminal current					50	100	μA
ange in JUST terminal current	$V_1 - V_0 = 2.5 V \text{ to } 40 V_0$	$I, P_{D} \le 20 \text{ W}, I_{O} = 10$	mA to 1500 mA		0.2	5	μA
erence voltage	$V_{\rm I}$ $ V_{\rm O}$ = 3 V to 40 V, $P_{\rm D}$ \leq 20 W, $I_{\rm O}$ = 10 mA to 1500 mA			1.2	1.25	1.3	٧
put-voltage perature stability	$T_J = 0^{\circ}C$ to 125°C				0.7		%V _O
imum load current naintain regulation	V ₁ - V ₀ = 40 V				3.5	10	mA
	$V_{1} - V_{0} \le 15 V$,	$P_{D} < P_{MAX}^{(4)}$		1.5	2.2		
Maximum output current	$V_1 - V_0 \le 40 V$,	$P_D < P_{MAR}^{(4)}$	$T_J = 25^{\circ}C$	0.15	0.4		A
S output noise voltage of V _O)	f = 10 Hz to 10 kHz,	$T_J = 25^{\circ}C$			0.003		%V ₀
ala selection	V 10.V	4 100 11-	$C_{ADJ} = 0 \ \mu F^{(3)}$		57		-D
pie rejection	$v_0 = 10 v_1$	T = 120 HZ	$C_{ADJ} = 10 \ \mu F^{(3)}$	62	64		- dB
g-term stability	T _J = 25°C				0.3	1	%/1k hr
S output noise voltage of V _O) ple rejection Ig-term stability Unless otherwise noter	$\label{eq:V_l} \begin{split} & V_l - V_O \leq 40 \ V, \\ & f = 10 \ \text{Hz} \ \text{to} \ 10 \ \text{kHz}, \\ & V_O = 10 \ \text{V}, \\ & T_J = 25^\circ\text{C} \\ & \text{d, the following test cond} \end{split}$	$P_{D} < P_{MAR}^{(n)},$ $T_{J} = 25^{\circ}C$ $f = 120 \text{ Hz}$ ditions apply: $ V_{I} - V_{C} $	$\begin{split} T_{J} &= 25^{\circ}C \\ \hline \\ C_{ADJ} &= 0 \ \mu F^{(3)} \\ \hline \\ C_{ADJ} &= 10 \ \mu F^{(3)} \\ \hline \\ \\ H &= 5 \ V \ and \ I_{OMAX} = 1.5 \end{split}$	0.15 62 A, T _J = 0°C to	0.4 0.003 57 64 0.3 0 125°C. Pu	1 Ise testir	% (%/

Another important aspect that you need to note that in most of the data sheets you will find R theta JA junction to ambient thermal resistance.

(Refer Slide Time: 07:40)

THERMAL METRIC ⁽¹⁾						
		(SOT-223) 4 PINS	KCS (TO-220)	KCT (TO-220)	(TO-263) 3 PINS	UNIT
			3 PINS	3 PINS		
e(JA)	Junction-to-ambient thermal resistance	66.8	23.5	37.9	38.0	°C/W
(UC(top)	Junction-to-case (top) thermal resistance	43.2	15.9	51.1	36.5	°C/W
eub	Junction-to-board thermal resistance	16.9	7.9	23.2	18.9	°C/W
IJТ	Junction-to-top characterization parameter	3.6	3.0	13.0	6.9	°C/W
JB	Junction-to-board characterization parameter	16.8	7.8	22.8	17.9	°C/W
(JC(bot)	Junction-to-case (bottom) thermal resistance	NA	0.1	4.2	1.1	°C/W
) For n repor	nore information about traditional and new thermal r t.	netrics, see the S	emiconductor an	d IC Package Then	mal Metrics appli	cation

So, from the core, the core of the regulator should not cross 150 degree centigrade; and to be on the safe side we set it at 120 degree centigrade and pass on the heat to the ambient. How do you pass on the heat to the ambient? You can use thermal resistance is given here in degree centigrade per watt. If they do not give reasonable thermal flow, you may have to put extra additional heat sinks, now that is very very important if any of your regulators or semiconductor devices has to function properly.