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Discrete Memoryless Channels: Mutual Information

In the last class, we studied Huffman coding. We will see the application of Huffman

coding to an extension of a source to improve the efficiency of source encoder. So, let us

take a example.
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I have a source with two symbols with the given probabilities as shown here and if we

calculate the entropy of this source it turns out to be 0.811 bit. Now, if you were to find a

compact code for this source, it is a very trivial, I have two symbols immediately I know

that compact code base they consist of two codewords 0 and 1. 

So, I require 1 binit and the efficiency of the source encoder in this case would be 0.811.

Let us try to improve the efficiency of this source encoder by deploying second extension

of the source.
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So, if I take the second extension of the source I will have four symbols. Assuming the

source to be discrete  memoryless source; I  can compute the probabilities  of the new

symbols in the second extension this I have been the state here. Let us deploy Huffman

coding for this and get the codeword for this. 

So, I will combine this two, this already arrange in a descending order of probabilities I

combine this. So, I will get 4 by 16. So, the next reduce source which I call it as S 1 will

have three symbols, this will be 4 by 16 and this will be 3 by 16. So, I reduce it once

more and then I get S 2 as the reduction, this is 9 by 16 and this will be 7 by 16.

And, now let us assign the labels. So, I start with the last reduction which has only two

symbols. So, I give 0, 1 here I will assign 0, 1 arbitrarily here also I will assign 0, 1. So,

this symbol in this S 1 will have the same codeword as what is here 9 by 16. So, this will

be 0. 

This will have you take the codeword 1 and the codeword for this will be 1 0, 1 1 I add 0

and 1 to the codeword 1, then this will go as it is here 1 1 this will also go as it is here 0,

then this basically 1, 0. So, I will add 0 to this and 1 to this. So, I get the codeword for

this as 0, 1 1, 1 0 0 and 1 0 1, correct.
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And, if we compute the length for this I have shown it here you get 27 by 16 binits and if

we calculate the entropy of the second extension which is nothing, but twice the entropy

of the original source turns out to be 1.622 bits. So, the efficiency turns out to be 0.961

which is an improvement over the earlier figure of 0.811, ok.

So, we can go for higher extensions and try to improve the efficiency of this encoder

using the Huffman coding algorithm, ok. Now, so far we have restricted ourselves to

information  sources  which  are  memoryless.  Now, for  the  sake  of  completion  let  me

discuss the calculation of entropy for a source with memory.
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We know that entropy of a discrete memoryless source is average information gain on

the occurrence of a symbol from the source and this entropy or the average information

is  same  as  the  average  amount  of  uncertainty,  we  have  before  the  occurrence  of  a

symbol.

So, now it is intuitively satisfying to say that this average amount of uncertainty before

the occurrence of the symbol will decrease with the number of past observe symbol. Let

me take an example of English text and let us assume that the output was this. Now, the

amount of uncertainty which I have at this position is; obviously, less than the amount of

uncertainty which I have at this position, correct. So, at this position I have observe W

and A and at this position I have observed all this x letters. So, I know that most likely

here it is going to be N, correct.

So, it is intuitively correct to say that amount of uncertainty decreases with the number

of past observe samples. We have also seen that if you take a discrete memoryless source

and if you take it n-th extension, then the entropy of the n-th extension is equal to n times

the entropy of the original source. So, what does mean that if I were to calculate the

entropy of the original discrete memoryless source then I can also obtain it by calculating

the entropy of the n-th extension of the source and then dividing it by n. So, this is the

entropy per symbol for the n symbol block.



Now, instead of if this source was not memoryless then also I can calculate the entropy

of n block of symbols which are being emitted from this source with memory, ok.
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So, if  we calculate  the entropy of the nth extension of the source with memory and

divided by n, then it is intuitively satisfying and we can also prove it more rigorously

mathematically that this quantity should be larger than or equal to H of s n plus 1 divided

by n plus 1 and this should be larger than H of s n plus 2 divide by n plus 2, correct.

So, the entropy of a source with memory is defined as. So, we can show that this limit

exists.  So,  far  we have discussed the measure of information and also examined the

mathematical definition for an information source. The next question which I would like

to address is information transmission, ok.
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So, we will start with the definition of information channel. So, the formal way to define

would be that information channel or communication channel has a input to it and output

to it let me call this input as X and output as Y and this is my communication channel. 

So, every unit of time the channel accepts an input selected from an input alphabet and it

and in response it emits an output Y which is an output symbol from an output alphabet,

correct.
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So, we can formally say that a channel is as shown here and we start with a discrete

memoryless channel, the counterpart of discrete memoryless source. So, we define what

is known as discrete memoryless channel as a statistical model which has a input which

is a symbol from input alphabet x, is a has an output which is a symbol from output

alphabet y and there is conditional probabilities associated between the output and the

input.

Now, we say the channel is memoryless when the output of the channel at a particular

time depends only on the input symbol at that time, correct.  So, this  is basically  the

definition for a memoryless channel. So, these are the conditional probabilities which

gets specified for a memoryless channel, for all j and k and by the law of probability this

condition is always satisfied.
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So,  we see  that  basically  that  we have  an  input  alphabet  which  I  call  it  as  curly  x

composed of symbols the cardinality of this alphabet is j; that means, there are j symbols

and we have the output alphabet which I call it as curly y is composed of y 0, y 1 up to y

k minus 1. 

So, the cardinality of output alphabet is k and we have the set of transition probabilities y

k given x j which is nothing, but probability of output symbol being equal to y k given

the input symbol is x j, for all j and k, correct.



Now, it is important to note that j and k are not same, correct. So, it is possible that K is

greater than J, for channel coding or K could be less than or equal to J. This condition

will happen if two input symbols get mapped to the same output symbols, correct, ok.
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 So, a discrete memoryless channel can be summarized in the form of a matrix.  The

matrix is shown here. If you look at the elements of the matrix they are given here and

this matrix is known has a channel matrix or stochastic matrix. If you look at any of the

input row here, then this is a fixed channel input, correct and if you look at any of the

column this is the fixed channel output, correct.

And, because this is a fixed channel input it is not difficult to see that this condition will

be always valid. Probability of y k given x j for k equal to summation k equal to 0 to

capital K minus 1, will be equal to 1, for all j. What it says that, some output will occur

for a given input x j, ok.
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So, the input to a discrete memoryless channel are selected according to the probabilities

p x j; j is equal to 0, 1 up to j minus 1. So, what it means that the channel input X is equal

to x j  occurs  with the probability  p x j  that  is  same as probability  of the this  event

occurring. This is known as a priori probability of x j.

Now, channel output is say Y then we can define the joint probability distribution that is

probability x j, y k as probability of X is equal to x j, Y is equal to y k and this can be

also written by base rule as.
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So, from this we can get the marginally probability distribution of the output as follows j

is equal to 0 to J minus 1 K minus 1.

So, let us take a simple case of a binary symmetric channel.
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Like we had considered a binary discrete memoryless source, so, we have an equivalent

of that. So, we have here J is equal to K is equal to 2, your input alphabet is x 0 is equal

to 0 and x 1 is equal to 1 and your output alphabet is equal to y 0 is equal to 0 and y 1 is

equal to 1 and this binary symmetric channel can also be shown by this diagram.

So, this tells you basically what is the probability of y 0 equal to 0, given x 0 is equal to 0

is this probability is given by 1 minus p, correct. So, if you look for the channel matrix

for  this,  this  will  be  of  the  form as  shown here.  This  p  is  basically  is  a  transition

probability or it is also known as conditional probability of error. So, in this diagram both

these branches are same p and that is why it is known as a symmetric channel.

Having define  a  discrete  memoryless  channel  next  question is  that  the purpose  of  a

communication channel is basically to know the transmitted symbol after observing the

output symbol from a channel. So, before you transmitters symbol there is some kind of

uncertainty  above  the  transmission.  We  do  not  know  this  symbol  is  going  to  be

transmitted, that symbol gets transmitted on the channel and then you observe the output



of the channel. Now, by looking at the output of the channel ok, I am supposed to know

what was the transmission which took place on that channel, ok.
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So, this is the concept of mutual information. Basically, it tells us what is the uncertainty

of the input symbol after I have observed the output symbol. So, remember before the

transmission starts, the uncertainty about the input symbol is given by this quantity that

is the entropy of the source and now, I am interested to calculate what is this uncertainty

after I have observed the output.
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So, I have input to the channel X and output as Y. So, based on the reasoning for the

definition of information measure I could say that the uncertainty which I have about the

input symbol given that I have observed a particular output symbol should be of the form

log to the base 2 1 by probability of x j given y k.

So,  this  is  the  amount  of  uncertainty  I  have  about  a  particular  symbol  in  the  input

alphabet given I have observed a particular symbol y k. So, now, what would be the

average uncertainty about the input symbol given that I have observed the output symbol

y k and this  can be obtained easily  by this  summation.  So, this  will  be the average

uncertainty I will have about the input symbol given that I observe the output symbol y

k. So, this I call it as by definition this is equal to by definition the conditional entropy of

x given Y is equal to y k correct.

Now, this quantity itself is a random variable and it will  take different values, so, in

principle we should able to calculate the average value of this and this will discuss in the

next class.

Thank you.


