
Principles of Digital Communications
Prof. Shabbir N. Merchant

Department of Electrical Engineering
Indian Institute of Technology, Bombay

Lecture – 05
Huffman Coding

Hello, welcome back. In the last class we studied prefix code which is a subset of a

uniquely decodable code. We also saw that prefix code and uniquely decodable codes

they satisfy what  is  known as McKraft-McMillan inequality. So,  the inequality  is  as

follows, correct.

(Refer Slide Time: 00:46)

And what it says basically that all uniquely decodable codes should satisfy this inequality

and this is a necessary and sufficient condition. So, what it means that if I have a prefix

or uniquely decodable code then this condition will be satisfied and if this condition is

satisfied then it is possible for me to generate a uniquely decodable code of prefix code.

Now, it is important to stress that this inequality is on the length of the code. So, let us

take a I have a source with 3 symbols and I have two codes which I have shown here.

Now, both these codes satisfy the length condition, if I evaluate this I get this equal to 1. 



So, this condition is satisfied, but we know that code 1 is unacceptable whereas, code 2 is

acceptable for the same lengths of the code rules. So, this condition only tells you that

their code exists, but does not specify the procedure to design such codes.

We also studied a strategy for choosing the lengths of the code words for a prefix code

and that is summarized in the slide here.

(Refer Slide Time: 02:36)

So, what we said that given a source with the probabilities associate with the symbols of

the source we said that if pi the probability of a symbol is of this form half raised to a

constant where alpha i is an integer, then I can choose my l i’s equal to alpha is which

will be equal to log to the base 2 of 1 by p i. 

And we showed that for such a case the average length of the code turns out to be the

entropy of the source and the efficiency turns out to be 1, but for the case where the

condition is not satisfied where you do not have of this form where alpha is a integers

then we said that we could choose the lengths of the code words given by this inequality.

And we showed that if we use this inequality using this lower bound Kraft-McMillan

inequality gets satisfied. So, what it is means that I should be able to design a prefix code

and for that prefix code I will get this result. So, what it says that that the average length

of the code cannot be smaller than the entropy of the source and using this strategy we



can get the average of length of the code in binits within 1 binit of the entropy of a

discrete memoryless source.

Now, this strategy may not be very good specifically when the entropy of our source is a

low  value  we  will  see  this  little  later  on.  But  if  you  want  to  improve  this  coding

efficiency another way would be to extend it to coding of nth extension of the source. 

So,  let  us  extend  this  strategy  of  choosing  the  lengths  of  the  codes  given  by  this

inequality to the nth extension of the source and if we do that then we should get this

result ok, where L n bar represents the average length of the code words corresponding to

the symbols from the nth extension of the source s.

(Refer Slide Time: 05:20)

So, if we assume our source is discrete memoryless source then I can write this quantity

has n times H s and then by dividing by n on all the sides I get this inequality. 

Now, I can this quantity is nothing, but the average length in binits required to code the

original source symbol correct therefore, I can write this as as follows. So, what this

result tells us that for source encoding we can make the average number of binits per

source symbol as small as, but not smaller than the entropy of the source and for given n

the result also tells us that the average length will be not greater than the right side of this

equation. So, you will have the average length within one by n binit of the entropy of the

source.



So, by increasing n we can get the value of L average to be as close as possible to H s

that  is  the  entropy  of  the  source.  But  the  price  we  pay  for  this  is  that  the  coding

complexity will increase because of large number of symbols which you will have in the

nth extension of the source. It is also important to know that this strategy of choosing the

lengths for the code word, does not tell us what is the value of this L average correct and

another thing is that it does not guarantee that I if I choose my code word lengths as per

this strategy then the code which I will get will have the average length which is the

minimum, correct.

So, I will let us take a simple example which will serve to show that this choice may

indeed provide a poor way to choose the codeword lengths that is an example out here.

(Refer Slide Time: 09:00)

I have a 3 source symbols and for 3 4 symbols the probabilities have been specified. So, I

can calculate log to 1 by pi and I get this quantity and then using this strategy I choose

my lengths to be 1 3 4, and then you can show that I can generate a code this satisfies

this length condition ok. So, I get this code. So, I have used this strategy.

Now, if you calculate the length for this code A you will come out it will turn out to be

1.78 binits per symbol, and the entropy of the source turns out to be 1.22 bits. So, this

basically  strategy  thus  satisfied  this  relationship  between the  average  length  and the

entropy of the source. So, that is fine correct. But we know that we can design another

code which is more efficient than this and that code basically is given by code B. Now, if



you take code B and if you calculate the length for this it turns out to be 1.33 binits per

symbol.
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So,  what  it  means  basically  the  average  length  which  I  got  using  the  code  B  is  a

considerable improvement over the average length which I could get using the code A

and the  code A was constructed  using  this  inequality  or  this  strategy which we had

discussed earlier, correct. 

So, I just want to say that that this strategy need not provide the best codeword lengths or

the code average code length which is minimum, ok. And what this strategy also this

code B also shows that there is little  to be gained by encoding the second or higher

extension of our source because best we can hope is 1.22 binits per symbol and using the

code B we have already achieved 1.33 binits per symbol.

So,  from the  results  of  our  study we can  conclude  that  if  you want  to  improve the

efficiency of source encoding then it  is  better  to  carry out  the coding in terms of  n

symbols of a source. And by increasing the value of n the efficiency can be increased, but

at the expense of coding complexity. Now, the question is that given a fixed end is it

possible for me to find a source code or design a source code or construct a source code

such that the average length of that source code will be minimum.



So, we will define what is a compact code. A compact code for a source s is a source

code which has the smallest average length possible if we encode the symbols from s one

at a time, and one algorithm to get this compact code is Huffman coding.

(Refer Slide Time: 12:12)

So, without going into the formal proof of proving that Huffman code is a compact code

we will show the construction of a Huffman code for a given source with the help of an

example.

(Refer Slide Time: 12:47)



So, I have a source consisting of 6 symbols and the probabilities have also been shown

here in the second column. For the first step of Huffman coding is to order the symbols

of the source s in decreasing order of probabilities.

The next step is basically, combine the 2 symbols with the lowest probability  into 1

symbol  with  probability  equal  to  the  sum of  the  probabilities  of  the  symbols  being

combined, and obtain a new source from s containing only k minus 1 symbols in this

case 5 symbols. We refer to this new source as a reduction of s and we call it as s 1 now

the symbols of this reduction of s may be reordered and again we may combine the two

list probable symbols to form a reduction of this reduction of s. So, we get s 2 from s 1

which is reduction of reduction of s.

So, by proceeding in this manner we construct a sequence of sources each containing one

symbol fewer than the previous one until we arrive at a source with only two symbols.

So, at this stage we find the code word for the s 4 and the codewords for this s 4 symbols

are just 0 and one once we have this codewords we proceed to the preceding source and

construct the codewords for the symbols in that source and that is done as follows 0.4

this symbol is also same as the symbol here in s 3. So, the codeword for this will be the

identical to the codeword which we have in s 4. So, this will be equal to 1.

Now, to determine the codewords for this two symbols in s 3 we take the codeword from

s 4 that is 0 and to that we add 0 and 1 arbitrarily. So, this becomes 0 0 and this will

become 0 1, then come to s 2 this was 1, so this will remain 1, this is same as this. So,

this was basically 0 0. So, this will be 0 0 and as far as the codewords for this and this is

concerned the codeword for this was 0 1, so we take that codeword 0 1 and to that we

add 0, so 0 1 0 0 1 1. So, this is the way we proceed till we come at the first column here

and we get the codewords for the source symbols and this is the codeword which are

given here.

Now, notice that when we assigning this 0 and 1, here also 0 1 0 1 this is a bit arbitrary I

could have assigned this 1 and 0 here also I could have done 1 and 0 correct. So, and if I

do  that  and if  I  generate  the  codewords  for  that  kind  of  assignment;  obviously, the

codewords  would  be  different,  but  the  codeword  lengths  will  remain  the  same  and

average length of that code will be the same as the average length of this code, correct.



And what I said this arbitrary assignment of 0 and 1 can be also achieved by just flipping

a particular position in all the codewords of this code.

So, if I take this say let us take a second position and if I flip this position in all the

codewords. So, this becomes 1, this becomes 0 0 0 0 I will get a new set of codewords;

that means, I will get a new source code, but again the length will be the same. So, these

are the trivial differences you get, but there is a an important difference which occurs in

this example is as follows if you take this combination we get 0 1 probability, now this

probability is same as the probability of other two symbols here correct and I have left

this symbol right at the below. What I could have done I could have taken it at the top.

So, if you follow that strategy and generate the code using the Huffman coding principle

for the same source I would get the code as follows.

(Refer Slide Time: 18:18)

So, I combined this and the combined one I take it as high as possible. So, I take it here

and other two basically I put it below then again I combine this I get 0.2, when I combine

this I get 0.3 which is the same as this 0.3, but I take it as high as possible and I put in the

top correct. 

And then I reach the last reduction where there are only two symbols and then do the

assignments of the 0s and 1s at these branches of bifurcations correct and then you get



the codeword by traversing from backward. So, from here you move you can get the

codeword for s 5.

And now if you see basically the codeword lengths are different, correct. So, if you adopt

this principle basically and calculate the average length you will find the average length

turns out to be exactly the same as the earlier one. But there is a difference is that that if

you calculate the variance of the codewords in this code by this formula you will find

that variance will be lower than the variance which we will obtain in the earlier case.

And in practical scenarios having a code of a lower variance is always better because it

avoids the chances of buffer overflow.

I would like to a note one more observation in the construction of Huffman code and that

is that once you have a reduction where you can construct a compact code then it is not

necessary for me to have further reductions because once I can generate the codeword or

compact code for that reduction then I can generate the compact code for the preceding

reduction. Take a simple example as shown here.

(Refer Slide Time: 20:40)

If I have a source consisting of 5 symbols and the probabilities are given as shown here.

Now, if you arrange them in the decreasing order of probability this is what I get correct,

and now if you take this order and if you combine this using offline code if I combine

this two what I will get is 0.125. And now if you look at the source symbol probabilities

in this reduced source s 1 this are of the form 1 by 2 raised to an integer. So, we know



that for this kind of probabilities we can easily generate the compact code and for that

the compact code is as shown here, correct.

So, now once I have a compact code for this reduction I need not proceed ahead for

further reduction I can go backwards. So, what I can do is basically I can generate the

codewords for my source s now this is 0 this is 0, so this will remain 0. This is 1 0, this

will still  remain 1 0, this is same, so this is 1 1 0 and for this basically will use the

Huffman coding algorithm I have the codeword 1 1 1 and when I come here I split it 1 1

1 and add 0 to this and add 1 to this. So, I get the code for this given here in just one

reduction. 

So, in this class we have studied Huffman coding and we will continue our discussion on

this in the next class.

Thank you. 


