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Comparison of M-ary Schemes

Important parameters of any modulation or demodulation technique include transmission

bit  rate,  bandwidth  requirement,  error  performance  in  terms  of  bit  or  symbol  error

probability and transmitted power, which is usually quantified by the signal to noise ratio

per bit, to achieve a certain error performance.

Now, to have a meaningful comparison of different modulation techniques, which we

have studied so far, this important parameters need to be taken into account. In fact, we

have done this kind of comparisons between M-ary PSK and binary PSK and between

M-ary QAM and M-ary PSK.

A more compact and meaningful comparison of different modulation techniques is the

one  based  on the  bit  rate  to  bandwidth  ratio,  which  is  bits  per  second  per  hertz  of

bandwidth  versus  the  signal  to  noise ratio  per  bit,  required  to  achieve  a  given error

probability. This ratio is commonly called the normalized bit rate, which measures the

bandwidth efficiency of a signaling scheme. So, let us determine this ratio for different

modulation of signaling techniques which we have studied so far.
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So, first we will start with M-ary ASK; we will assume that ideal Nyquist filtering has

been done, in and since M-ary ASK is a form of amplitude modulation the bandwidth

efficient  transmission  would  be  to  use  single  side  band  transmission.  So,  for  this

transmission, the bandwidth requirement would be equal to 1 by 2 T S, T S is the symbol

duration.

Now, we know that T S is equal to remember this is this bandwidth equal to 1 by 2 T S is

because of single sideband, if it was a double sideband, then it would be 1 by T S. T S is

equal to n T b which is equal to n by r b, where r b is 1 by T b. So, this is same as writing

log to the base 2 of M by r b. Now, bandwidth is equal to 1 by 2 T S. So, we can rewrite

this  as r  b by 2 log M and therefore,  this  ratio  r  b by B, this  is  the bit  rate  by the

bandwidth required for single sideband M-ary ASK would be equal to twice log to the

base 2 M bits per second per hertz.
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Now, let us take M-ary PSK M is larger than 2, again we assume ideal Nyquist filtering

and this is a double side band transmission. So, the bandwidth required would be 1 by T

S. T S is equal to log to the base 2 M by r b. So, r b by B for M-ary PSK would be equal

to log to the base 2 M bits per second per hertz. 



(Refer Slide Time: 04:56)

Now,  for  the  rectangular  QAM,  we  have  seen  it  is  2  independent  ASK  signal

transmission on orthogonal quadrature carrier. So, the transmission rate is twice that of

ASK. And transmission is via double side bands. So, QAM and single sideband ASK,

will have the same bandwidth efficiency. And it will be equal to 2 log to the base 2 and

here we will assume that this QAM is a square QAM. So, in that case I can write this as

square root of M, this ratio r b by B is also known as spectral efficiency in the literature.

And now finally, let us look at the M-ary FSK.

(Refer Slide Time: 06:32)



We will  assume that  the  message  signals,  in  this  message  set  for  M-ary  FSK,  have

coherent orthogonal condition is satisfied. So, frequency separation is going to be 1 by 2

T S and, in this case the bandwidth required for transmission of M messages would be

equal to approximately M times 1 by 2 T S. And this I can again rewrite as M by 2 log to

the base 2 M r b fine. And now for this the bandwidth efficiency or spectral efficiency

would turn out to be this quantity.
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The figure out here shows the plot of the bandwidth efficiency, or the spectral efficiency

that is r b by B versus signal to noise ratio per bit. For single sideband ASK, PSK and

QAM and FSK, when symbol error is 10 raised to minus 5. Now, observe that in the case

of ASK, PSK and QAM increasing M results in a higher bandwidth efficiency; however,

the cost of achieving the higher data rate per unit of bandwidth is an increase in signal to

noise ratio per bit.

So, as I increase this for PSK, I have go from M equal to 4 to 8, 16, the bandwidth

efficiency improves, but SNR per bit also increases. So, consequently this modulation

techniques are appropriate for communication channels that are bandwidth limited. So,

you see there is a line here, dividing line and where above this, this bandwidth efficiency

is  greater  than  or  equal  to  1.  So,  this  modulation  techniques  are  appropriate  for

communication channels there are that are bandwidth limited, where it is desired to have



a bit rate to bandwidth ratio greater than 1. And when there is sufficiently high signal to

noise ratio per bit to support this increase in M.

So, telephone channels and digital microwave channels are example of such bandwidth

limited channel. In contrast M-ary FSK modulation provides a bit rate to bandwidth ratio

which is less than 1. So, it lies below this line.  So, as M increases r b by B that is

bandwidth  ratio  decreases  due  to  the  larger  increase  in  required  channel  bandwidth;

however, the signal to noise ratio per bit, required to achieve a given error probability, in

this case is 10 raised to minus 5 decreases as M increases. Therefore, the M-ary FSK

signaling technique is appropriate for power limited channels that have sufficiently large

bandwidth to accommodate a large number of signals, but cannot afford a large signal to

noise ratio per bit.

So, for the case of M-ary, FSK as M tends to infinity. The error probability can be made

as small as possible as desired, provided this signal to noise ratio per bit is larger than 1.4

to decibel, which we have studied earlier. So, note in this figure there is a graph for the

normalized channel capacity of the band limited additive white Gaussian noise channel,

which is due to Shannon and which we have studied earlier.

So, this ratio C by B, where C is the capacity in bits per second represents the highest

achievable bit rate to bandwidth ratio on this channel that is an additive white Gaussian

noise channel.  So, this  serves as an upper bound on the bandwidth efficiency of any

modulation technique. And this bound we have studied earlier in the course. 

So, in our study we have assumed that the transmitted signal is received at the receiver

without any phase uncertainty, but in practical applications phase uncertainty can arise

due to different aspects. One possibility is slow drift in the receivers local oscillator that

is  used  to  demodulate  the  incoming  signal  to  base  point.  Another  common effect  is

changes in the propagation time of the signal between the transmitter and the receiver.

So,  significant  phase  uncertainty  can  therefore,  be  introduce  quite  readily  into  the

received signal.  What this  means that using BPSK as a modulation technique,  in the

phase of this phase uncertainty is an impossible proposition, but we will see a way out of

this. We will also study the effect of this phase uncertainty on binary FSK. Now, in order

to  do  this  kind  of  study  we  need  little  some background  and,  we will  prepare  that

background as follows. 



So we will see, what is the effect of the phase uncertainty on the transmitted signal, when

it is received at the receiver and projected on some basis signals, which we have used to

represent that message signal set?
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So, let us take a transmitted signal to be a sinusoid of the form given here, and that

sinusoidal signal is  of a duration T b.  Now, at  the receiver  we will  assume that this

transmitted signal has some kind of phase uncertainty in the form of this theta.

So, far we had neglected this theta, we had assumed it to be 0 without loss of generality.

And  we  had  assumed  that  this  received  signal  is  only  corrupted  by  additive  white

Gaussian noise with 0 mean and power spectral density of italic N by 2. Now, let us

assume that we have 2 basis signal and this basis signals are phi 1 t and phi 2 t which are

nothing, but 2 quadrature carriers.
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And we  are  interested  in  studying the  behavior  of  the  received  signal  r  t  onto  this

orthonormal basis signal. So, the projection of the received signal onto this phi 1 and phi

2 t would be denoted as r 1 and r 2. For the model, which we have used for the received

signal on this case the projection of r t on phi 1 and phi 2 t would be equal to as given by

these expressions for r 1and r 2. Now, our task is basically is to find out what is the joint

pdf for r 1 and r 2 given this uncertainty about the theta. So, we will determine the joint

pdf of r 1 and r 2 as follows.
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So, the procedure is assume a specific value of theta and determine the joint conditional

pdf for the specific value of theta. And, then we average this conditional pdf over the

domain of theta, which is a random variable. First write this conditional pdf joint pdf for

the particular value of theta and, that is very simple to write because, we know that r 1

and r 2 are going to be Gaussian and, with the power spectral density of italic N by 2 and

the mean determined by root E cos theta and root E sin theta. So, this is the joint pdf we

write it, for the particular value of theta.

Now, we have to average this over the domain of theta. So, for this we have to assume

some kind of probability  distribution function for the random variable  theta,  we will

assume the pdf for the theta to be uniform between 0 and 2 pi. So, f theta is equal to 1 by

2 pi, using this pdf for theta we can find out the joint pdf for r 1 and r 2 as follows. 
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So, this is the conditional pdf, for r 1 and r 2 given theta and, then we multiplied by the

pdf of theta and integrate this over the domain of theta that is 0 to 2 pi.

So, since we have assume the pdf to be uniform it becomes 1 by 2 pi. And, now we see

that  this  can  be  rewritten  as  shown  by  this  expression,  this  is  simple  to  get  after

expansion of these 2 terms. So, this term will come once we expand these 2 terms and,

what will be remaining here as a function of theta is shown by this expression. Now, this

expression here can be rewritten in a different form, I can write this r 1 cos theta plus r 2

sin theta in a polar form, if I write this in polar form I get this expression.



Now, if you observe this integral in the polar form, it is equivalent to integral, which is

known as modified Bessel function of the first kind and which is defined as given by the

expression here. So, if you relate this expression and this expression, it is easy to see that

I can write my joint pdf in terms of modified Bessel function of the first kind as follows.

(Refer Slide Time: 19:25)

So, we get the result in terms of the modified Bessel functions of the first kind. And

finally, the joint pdf for the r 1 and r 2 would be given by this expression on the right

hand side of this  equation.  Now, we will  study a  different  approach to  compute this

quantity, which is square root of r 1 squared plus r 2 squared and, we will do it using

what is known has band pass filtering approach.
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So, let us say we have a input r t passing through a linear time invariant system, which is

in the form of bandpass filter with an impulse response h t and it is output is y t. The

impulse response h t is specified here this is a sinusoid of frequency f c over a duration t

b.

So, this impulse response can be rewritten, in this form where u t is a unit step function

which says that for t less than 0, it is 0 and t greater than or equal to 0 the value is 1.

Now, using this impulse response let us calculate the output of the band pass filter.
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So, the output is given by the convolution of the input r t and the impulse response h t,

which can be written as shown here. Now, we will substitute the value of h t minus alpha

and if we do that we get this expression. And, now we will expand this term using the

trigonometric relationship and, if we do that we will get 2 terms here, this is modulating

cos 2 pi f c t and this is modulating sin 2 pi f c t.
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Now, if we define these 2 integrals as y I t is equal to this quantity and y Q t is equal to

this quantity, then we can rewrite y t in terms of y I t and y Q t as follows. And this can

be rewritten in the polar format as given by this expression. Now, this term out here is

the envelope of the signal given by this expression.
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We get the envelope of y t to be this quantity. Now, if we evaluate this and envelope at

the sampling instant t equal to k T b what we get are the following expressions for y I k T

b and y Q k T b. Now, if we take the projections of r t on to cos 2 pi f c t and sin 2 pi f c t

during the k-th bit interval, we will get this expressions.
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So, during the k-th bit interval r t projected on cos 2 pi f c t with give us this expression,

an r t projected on sin 2 pi f c t during the k-th bit interval would give us the value for r t

equal  to  this.  So,  from this  relationship  and  from this  relationship,  we  see  that  the



envelope of y t sampled at t equal to k T b is exactly equal to the square root of r 1

squared plus r 2 squared.

So, this result can be interpreted in a different manner saying that, this bandpass filter

with the impulse response h t is match to the input, which is a sinusoid of a duration T b.

So, this is match filtering to the envelope of the input sinusoid of the finite duration. And

in that case the phase does not play an important role. Now, we will see the application

of this joint pdf of the sufficient statistic r 1 and r 2 and, the relationship to the envelope

of  the  output  of  a  bandpass  filter,  when  we  study  the  non-coherent  binary  FSK

modulation scheme. And this we will do next time.

Thank you. 


