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Principle of Invariance of Probability of Error

One  of  the  important  measure  for  the  evaluation  of  the  performance  of  a  digital

communication system is Probability of Error. Repeat one of the important parameter

used to evaluate a digital communication systems performance is probability of error.

In today’s class, we will seek the answer to the following question does the probability of

error get affected by the rotation or translation of the coordinate axis which we use to

represent the signal vectors? And we had also learn how to calculate the probability of

error for any general binary signals.
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We have studied how to convert continuous additive white Gaussian noise model of a

channel to a vector additive white Gaussian noise model. So, let us quickly recollect it

this  is  the  model  which  we have  used  for  continuous  AWGN channel,  we have  the

transmitted  signal  on the channel  white  Gaussian  noise gets  added and we have the

received signal r t.



Then using the Gram-Schmidt  procedure,  we know how to find out  the orthonormal

basis signal set for the given message signal set. And using that orthonormal basis signal

set  we  can  convert  the  continuous  signals  in  terms  of  vectors  as  shown  by  this

expression. And these vectors are obtained by taking the projection of the signal onto the

basis signals used to represent the message signal set. So, we are assuming here that we

have M message signals and the maximum number of basis signals which you could

have would be equal to N, where n is less than equal to capital M.

Now, signal  constellation  is  nothing but  this  signal  vector  representing  the particular

message signal.
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So, a particular message signal S i t gets converted to a message vector S i which is a

point in a Euclidean space of dimension N less than or equal  to M. Now the set  of

message signal points corresponding to the set of all the transmitted signals is called a

message or signal constellation and sometime in the literature this also known as signal

space diagram, this we have studied earlier.
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Now, we know that when we get the received signal r t; then we take the projection of r t

onto the phi j t where phi j t represent the orthonormal basis set. Now we also seen that

the only data useful for making the decision is obtained by taking this projections. And

this  therefore,  represents  sufficient  statistics  for  the  problem and at  hand ok.  So,  by

definition sufficient statistics summarizes the whole of the relevant information supplied

by the observation vector.

So, when we do this kind of a projection the noise components which fall outside the

space  represented  by  the  orthonormal  basis  set,  do  not  affect  our  decision  making

process. So, it becomes an irrelevant information; we have also studied that the optimum

receiver  for  an  additive  white  Gaussian  noise  channel  and  for  the  case  when  the

transmitted  signals  are  equally  likely  is  a  correlation  receiver  which  can  also  be

implemented using a match filter. So, in such a case this correlation receiver or match

filter implementation gives us what is known as maximum likelihood detector.

Now, in order to evaluate the performance of AWGN channel; we have to calculate the

average probability of symbol error.
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And this  we have seen earlier  that this is done by partitioning the observation space

which  we call  R in  sets  of  regions;  R 1  to  R M in  accordance  with  the  maximum

likelihood detector, all this we have studied earlier this was to just recollect quickly.
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Now, the next question is that what happens to the probability of error if this coordinate

axis is rotated or translated. So, let us take the first the case of rotational; now we will

study what is known as principle of rotational invariance. What it says is as follows if a

message constellation is rotated by the transformation S i rotate. So, S i is your vector



corresponding to message signal S i and to that we have the message vector or signal

vector S i.

And  now  this  signal  vector  is  rotated  using  this  transformation  matrix;  this

transformation matrix Q is an orthonormal matrix correct. Then we will show that the

probability of symbol error which we denote as P e incurred in maximum likelihood

signal detection over an AWGN channel is completely unchanged. So, P e is rotational

invariant; so, let us take a simple example to understand what we are studying. So, let us

assume that I have a signal space diagram or signal constellation as shown here there are

four points in this.
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Now, these four points are being plotted with reference to this 2 signal phi 1 and phi 2

which are orthonormal. Now if this coordinate axis is rotated say by 45 degrees if I rotate

this by 45 degrees I will get this signal space diagram and the rotated axis, I am just

calling it phi 1 dash and phi 2 dash. I do not change the relative positions of this signal

vector except for rotation of the coordinate axis.

Now, if such a thing happens and if you were to calculate the probability of error for this

signal  constellation,  then  we  will  see  that  the  probability  of  error  for  this  signal

constellation is exactly the same as the probability of error which we will get using this

signal constellation or the signal space diagram.



Let us look at the proof for this; so, we have been given that the transformation matrix

which we use is orthonormal what it implies that this condition will be valid where I is

identity metric, all your diagonal elements are 1 and off diagonal elements are 0 I carry

out the this transformation. So, your each of these points get transformed to four different

points using this transformation matrix Q. When I do this I know my noise vector; the

earlier noise vector also will go through the same transformation correct; so, I put up this

transformation here.

Now, let us see what happens to the statistical characteristic of this noise vector and we

will show that this noise vector statistical characteristic remains the same as the earlier

noise vector; let us try to prove this. So, the first thing is if we assume that here this noise

vector was Gaussian, then it is not very difficult for us to see that this will still remain

Gaussian, because this Q matrix is nothing but the linear combination of the Gaussian

random variables. And we know that linear combination of the Gaussian random variable

will also give us the Gaussian random variable, so this still remains Gaussian.

Then let us look at the mean value of that.
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We can calculate the mean value as follows expectation of this noise vector, I carry out

the expectation of this I interchange the expectation and the Q operation this is given to

be 0, so, I get this to equal to 0. So, this noise vector after rotation also remains 0 mean.



Let us look at the covariance matrix of the rotated noise vector, I have this expectation of

this I am supposed to evaluate this I can rewrite it as this expression easy to see that. I

take the transpose, once I take the transpose I will be able to like this term out here as

this term. Now we know that W W transpose is equal to given is italic N by 2 multiplied

by the identity matrix. So, if I substitute this out here what I will get from here is this

quantity because remember this is I matrix identity matrix and then this also multiplied

by this again identity matrix; so, you get this. So, what this shows that our noise rotated

noise vector statistical characteristic remains unaffected.

(Refer Slide Time: 12:43)

So, in that case now let us try to evaluate r rotate which is nothing but Q S i plus this

now I will write this as W; some vector noise vector we have just shown that this rotated

noise vector statistical  characteristic  does not change. So, I have just  used this  noise

vector with the same characteristic as the earlier one.

Now, let us try to calculate the distance between the received vector and each of the

message vector in the signal constellation. So, here I have shown the distance calculation

for a particular message vector S i after rotation. So, this will be the Euclidean distance

which I will have this I can rewrite it as this expression because this have been rotated

and it is easy to see that this turns out to be W correct. So, and this W is nothing but r

minus S i that is the your earlier Euclidean distance which you had between the received

vector and the message vector I in the old signal space diagram ok.



Now, we know that in maximum likelihood detection this should be detection corrected,

in maximum likelihood detection the probability of error depends solely on the relative

Euclidean  distance  between  a  received  signal  point  and  the  message  point  in  the

constellation; this we have studied earlier. So, what this result shows that this relative

Euclidean distance between the received signal point and a particular message point in

the constellation remains unaffected.  And remember that  the additive white Gaussian

noise is spherically symmetrical in all directions in the signal space.
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Now, let  us take another  property of this signal constellation and that is principle  of

Translation invariance. What this says is that if a signal constellation is translated by a

constant vector amount, then the probability of symbol error P e incurred in maximum

likelihood signal detection over an additive white Gaussian noise channel is completely

unchanged correct.

So, this figure out here depicts what is to be done; I have signal constellation, I have just

shown 1 dimensional signal space. And now this point is origin out here this has been

shifted to some other point and so, maybe this point comes here correct. And rest of the

thing the distance between this message vectors, they do not chang; so, they remain the

same.

Now, in such a case also the probability of error will remain unchanged very simple to

prove this.
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 The proof follows for my signal vector, it has got translated a is some arbitrary shift

vector, my the received vector will also get translated. Now if I take the distance between

the 2 this is the new one received, this is my signal vector after translation I take the

difference Euclidean distance refer it remains the same correct.

So, we have shown that basically that if I rotate or translate my coordinate axis; the

probability  of  error  does  not  change.  It  is  an  important  concept  which  we  should

remember when we are trying to evaluate the probability of errors. Now, quickly we will

also try to calculate the error probability for equiprobable binary signaling scheme.
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. So, let us say that the transmitter transmits 2 equiprobable signals S 1 t and S 2 t over

the additive white Gaussian noise channel.

Now, let me denote let me denote those 2 points in the signal space diagram as shown

here, this is S 1 and S 2. So, these are the 2 vectors corresponding to the 2 signals S 1 t

and S 2 t. Now we know that signals are equiprobable; so, what this imply that the 2

decision regions R 1 and R 2 will be separated by the perpendicular bisector of the line

joining S 1 and S 2 correct. So, I take the perpendicular bisector; this region out here

would be R 1 and this  region on this  side of the line would correspond to S 2; the

distance between S 1 and S 2 let it be denoted as d suffix 1 2.

Now, so this is the perpendicular bisector which decides your decision boundary between

R 1 and R 2 presuming that both the signals are equiprobable. Now since the signals are

equiprobable by symmetry error probabilities when S 1 or S 2 is transmitted are equal.

And therefore, it would be equal to this probability; probability of error given S 1 is sent.

So, let us try to calculate this probability and this probability will be the same as the

probability of error for this equiprobable binary signaling scheme.

Now, to do that basically since we are assuming that S 1 is sent an error occurs if the

received  vector  r  is  in  the  region  R 2,  which  implies  that  the  distance  between  the

projection of r minus S 1. So, this is a vector correct on S 2 minus S 1 that is this is a

point I get the projection that should be larger than the midpoint of this which is d 1 2 by



2 correct. So, this if this condition is satisfied then your vector r would be lying in the

region R 2 and in that case the error will occur ok.

So, this implies that this condition should be the probability of error now is nothing but

the probability that r minus S 1 now remember r minus S 1 is nothing but your noise

vector n. So, what it implies? That the probability of the noise vector n projected onto

this, this is the normalized by d 1 2; the unit vector in this direction, I am taking the

projection that should satisfy this condition for the error to occur.

Now, if  this  condition  is  satisfied;  it  means that  probability  this  condition  should be

satisfied correct.
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Remember that this noise vector projected on S 2 minus S 1; the line joining S 2 minus S

1, this is a 0 mean Gaussian random variable with variance given by this quantity we

have done this earlier. So, I do not want to repeat it.

Now, quickly we know that if I give you a Gaussian pdf; a general Gaussian pdf with

mean value to be m and the variance equal to sigma squared, then probability of the

random variable X being larger than certain value beta would be given by this function Q

function  and  the  Q  function  itself  is  defined  out  here.  So,  using  this  we  want  this

condition to happen. Remember this is the noise is additive white Gaussian noise, so we

want this to happen.



So, this is your random variable Gaussian random variable with the 0 mean. So, m is

equal to 0 in this case and your variance sigma squared is equal to this quantity. And if

we use this relationship out here; it is easy to see that the probability of error in this case

would be equal to this quantity divided by the standard deviation of the noise which I can

rewrite as this.

So, what this shows is that this is nothing but the distance d 1 2 is a distance between the

signal points and half of that. And then which is divided by the projection of the noise

onto the unit vector correct. And we know that if the input power spectral density or the

variance is italic N by 2, then here also the variance will remain same as italic N by 1; so,

this is standard deviation. So, this is a standard a very general formula to calculate the

probability of error for equiprobable binary signaling schemes correct.

So, this is valid regardless of the shape of the signals; now remember that this Q is a

decreasing  function.  So,  what  is  required  to  minimize  the  probability  of  error  is  to

maximize the distance between the 2 signal point. And quickly basically that there is

another way also to calculate this distance d 1 2, sometimes this is useful and specifically

when you have very generic type of signals S 1 and S 2 t and we can do directly in the

time domain and we can use this expression for calculating d 1 2 squared.
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This is a very generic way for calculation of probability of error. Let me summarize, so

today we have seen that the probability of error remains unaffected by the rotation and



the translation of the coordinate axis, which is used to represent the signal vectors based

on particular orthonormal basis signal set.

And we have also learnt how to calculate the probability of error for equiprobable binary

signaling schemes where S 1 t and S 2 t could be of any shape. Now this will be useful

for us when we are evaluating the performance of digital  carrier modulation schemes

which we will study next time.

Thank you.


