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The process of converting digital data into electrical waveforms or pulses is known as

Line Coding. There are certain properties which are desirable of a line code. To get a

better understanding of these properties Fourier representation of a line code would be

very useful.  Unfortunately, the digital  signal  based on any particular  line code being

random in nature or stochastic in nature, we cannot find out the Fourier transform of that

digital signal because the Fourier transform is applicable only to deterministic signals.

So, in such cases, where we have sample functions of a random process, then Fourier

representation  of  a  random signal  is  obtained  in  terms  of  what  is  known as  power

spectral  density.  Power  spectral  density  can  be  shown  to  be  Fourier  transform  of

autocorrelation of the random process presuming this random process is at least white

sense stationary finding. The power spectral density of the transmitted signal would help

us to understand whether that particular signal is compatible to the channel frequency

response, because many channels cannot pass DC or 0 frequency owing to ac coupling.

And low pass response also limits the ability to carry high frequencies.

So, today, we will study; how to evaluate power spectral density of different formats of

line code. But, we will start the study with the evaluation of power spectral density for a

generic line code.
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So, we will assume that our digital data is transmitted by using a basic pulse p t. This p t

could be of any shape, but for our current discussion, let us assume that this p t is also

restricted to the duration T b, correct. This is one form of p t which I have shown here.
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So, successive pulses are separated by T b seconds and the k-th pulse is denoted by alpha

k p t; where alpha k is a random variable. 
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Now to be very generic, we will assume that the pulse train which is being transmitted on

the communication channel looks as follows where the distance beta of the first pulse

that is k equal to 0 from the origin is likely to be any value in the range between 0 to

capital T b 0 to T b, fine.

So, if this is the model which we assumed for our transmission, we can write our digital

signal of this form. Now, let us assume that the pdf of this beta is uniform and the value

can be anything between 0 to T b is equal to 0 otherwise. Now, before we carry out the

power spectral density calculation, we mentioned that is important that for the process to

be at least white sense stationary; what this implies that the mean value of the process

should be constant with respect to time and the autocorrelation function should only be

dependent on the distance between the two samples and not particular value of the time

instance.

So, let us try to first find out; what is the mean value of this random process.
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So, to do that; so, we will evaluate this quantity. This bar denotes the expected value this

I can rewrite it as please note that alpha k is independent of the random variable beta. So,

I  can separate  it  like this;  alpha k average value of that  I  can remove it  outside the

summation, this can be rewritten as pdf of beta. 
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We know the pdf of beta to be constant 1 by T b, this I can rewrite as follows, I will

make a simple substitution that t minus k T b minus beta equal to say gamma, then if I do



this I can rewrite it as p gamma delta gamma and then substitute the limits note that

when I take the derivative of this with respect to beta, I will get minus sign.

So, delta of gamma is going to be minus and then that is why this limits again change

back as shown here and this can be rewritten as which is equal to a constant. So, we have

shown that the mean value of a; such a random process is a constant. So now, we will

proceed to find the autocorrelation function of this random process. 
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So, we are interested to calculate this quantity and let us see what happens, this is equal

to this, I can rewrite it as remember alpha k and alpha m are both independent of beta.

Therefore, we can rewrite the above expression as follows multiplied by and write the

quantity below expectation of this quantity.
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Now, we make a simple substitution, let m is equal to k plus n, if I do this, then I can

write my autocorrelation function as follows both k and n are being sum over minus

infinity to plus infinity, again, this quantity I rewrite it here sorry this is this is d.

Now, let us define R n to be expectation of alpha k and alpha k plus n, if I use this, then I

can rewrite my autocorrelation function to be as follows. This is a integral of these two

terms. Now, again we make a small substitution, let us write this quantity to be equal to

eta, if we do this, then this expression can be rewritten as follows.
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I missed out one term here, this should be multiplied by the pdf of beta; when I am travel

trying to evaluate expectation, I have to put this f beta and this f beta remember is equal

to uniform pdf which is 1 by T b. So, that can be removed outside, this is n is equal to

minus infinity to plus infinity and k is equal to minus infinity to plus infinity.

And the limits for this integral would be as follows and this expression, I can rewrite it as

now the integral on the right hand side is the time autocorrelation function of the pulse p

t with the argument tau minus n T b, right. So, what this implies that my autocorrelation

turns out to be the following expression where R n as defined earlier is equal to this

quantity and this by definition is to time autocorrelation of the pulse T.

(Refer Slide Time: 19:35)

Now, with this definition, what this shows that this quantity out here is equal to Rx tau

because it is not function of t.
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 Now if P t has Fourier transform pair P f, then we know that its time auto correlation

will have the Fourier transform pair which is P f mod squared. So, from this, we get the

power spectral density of x t which is the Fourier transform of R x tau from Einstein

Wiener Khinchin theorem can be written as we are taking the Fourier transform of this.

So, Fourier transform of this quantity will be P f mod squared and because of n T b, there

will be a phase shift given here the final expression we get power spectral density of the

random process x t is given by the following relationship. 
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So, we see that the power spectral  density is heavily dependent on the choice of the

function P t, this we have derived power spectral density for a very generic line code, we

will try to evaluate this power spectral density for some specific line codes like polar

bipolar. And this, we will do next time.

Thank you.


