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DPCM – II (Linear Prediction)

In differential pulse code modulation popularly known as DPCM, we transmit some kind

of a different sequence rather than the original sequence itself. Now we have shown that

the quantization noise associated with the sample of the original signal or the original

sequence is same as the quantization noise associated with the samples of the different

sequence. We have also seen that quantization noise is directly related to the variance of

the dynamic range of the input to the quantizer.

Now, we have also studied that the different sequence has variance and dynamic range,

which is much lower than the variance and dynamic range of the original sequence. So,

DPCM gains advantage in this sense. Now how much is the reduction of this variance

will depend how well you can predict the current sample from the previous reconstructed

sample.  So,  let  us  try  to  formulate  this  problem  of  prediction  in  a  mathematical

framework, and the analytical solution which we will get to this problem will help us to

understand some of the popular used approaches in the design of the predictor.
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So, let me just show you this right which we had studied last time also. So, this is a

transmitter end of the DPCM and this is the receiver end of the DPCM and we have this

block which we call it as a prediction filter block, which is there both of the transmitter

end  and at  the  receiver  end.  And  what  we are  interested  is  basically  to  get  a  good

predictor so, this variance of this difference sequence can be substantially reduced.

Now, when we are trying to find out the optimal predictor, our criteria for optimization

would be to minimize the variance of the different sequence.
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This is your input sample and this is the predicted sample squared error and expectation

basically  will  give  you the  mean  value  of  this  squared  error.  And  we  said  that  our

predictor is nothing, but it is a function of the past reconstructed values. Now design of a

good predictor is essentially the selection of this function f that minimizes the variance

of the difference sequence. Now the problem with this formulation is as follows.

The reconstructed sample of x n is x q and this xq n is equal to x n plus quantization

noise. So, this quantization noise depends on the variance of the difference sequence.

Thus by picking the function f we will  affect the variance of the different sequence,

which we in turn will affect the reconstruction x q which then affects the selection of f.

This  coupling  makes  an  explicit  solution  extremely  difficult  for  even  the  most  well

behaved source and most of the real sources are far from well behaved. So, the problem

becomes computationally intractable in most applications.



So, we will try to find the solution to this problem by making an assumption and that

assumption is known as fine quantization assumptions.
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This assumption states that we will assume that your quantizer step size is so small, that

we can replace the reconstructed value of the sample by the value of the sample itself

correct. In that case your x hat which is the predicted value will become functions of the

past original samples and not the past reconstructed samples. Now once the function has

been found using the past original samples, we can use with the reconstructed values x q

to obtain x hat.

Now, from the study of random processes, we know that for a stationary process the

function that minimizes the variance of the difference is the conditional expectation of

the sample x n given the past samples. Now unfortunately this condition of stationarity is

generally not true in a practical applications and even if it was true, finding the solution

as  conditional  expectation  is  difficult  because  this  involves  a  nth  order  conditional

probabilities.

So, we will simplify our predictor design by assuming that we are interested in what is

known as linear prediction.
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 In linear prediction what we are supposed to do is that, find out those values of these

weights  called  alpha  j.  So,  the  problem  is  you  find  the  predictor  using  the  linear

combinations of the past reconstructed values and we use capital N to be the number of

past samples. So, this N is also known as Nth order of the predictor. So, original problem

has  been put  in  the  linear  framework like  this  and if  we assume that  we have  fine

quantization, then our problem reduces to finding alpha j such that the variance of the

different signal using this linear combination gets minimized. So, find alpha j, j equal to

1 to n to minimize the variance which is equal to expectation of j equal to 1 to capital N.

Now, we will assume that, this sample sequence comes from a wide sense stationary

process and that condition is satisfied I will be able to calculate the autocorrelation and

cross correlation of the sequences so let us do that.
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So, we will  take the derivative of this  partial  derivatives  with respect  to each of the

coefficient. So, when I take it to with respect to alpha 1 I will get this value the first term.

It is important to note that differentiation and the expectation operators are linear. So, in

most of the practical cases, we can interchange the order of this operation and this is

what  has  been  done  here.  First  the  partial  derivative  has  been  taken  and  then  the

expectation, this will be equal to 0, taking differentiation with respect to alpha 2 would

give you and then we are to take the differentiation of this differentiation of this with

alpha 2 will be 0, here all the terms will vanish except corresponding to alpha 2 and from

there you will get only this term left out this will be equal to 0. So, this way if you

proceed, this is the last this is small n minus capital  N means, this is equal to 0 this

quantity out here is nothing, but the error in prediction.

So, all this equation suggests that the error is orthogonal to all those components which

are being used for linear prediction.
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So, what it  means is that,  expectation of the prediction error and all  the components

which are being used for linear prediction, this is equal to 0 for j equal to 1 to up to n.

This is known as orthogonality principle.

So, whenever the error is orthogonal through the components, which are being used for

linear  prediction,  then you will  get the minimum mean square error. Now taking the

expectations here this will get expectation e will go inside we can rewrite this equation.

But before we rewrite this equation let me define the autocorrelation as follows.
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I am assuming that all our samples in the sequence are real, this is a property of the

autocorrelation.  Autocorrelation  is  possible  because  of  the assumption  of  wide  sense

stationary. So, all these equations which we have n number of equations can be re written

as follows. The last equation which will have; see this set of equations are also known as

discrete “Widrow-Holf” equation.
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We can put it in the matrix form as follows, where your R matrix is n by n matrix and it

is composed of the following elements here.

While writing this terms in this matrix, we will use the property of the autocorrelation.
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This says that this autocorrelation is a symmetric function your alpha is a weight vector,

your small r vector is autocorrelation elements. Now if you assume that this matrix R is

invertible, then I will get my alpha optimum to be ok. So, when I take this, this will call

it as alpha optimum fine ok.
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Now, let us calculate the signal to noise ratio of the DPCM system, when I say signal to

noise ratio here I mean the quantization noise of the DPCM system this is nothing, but

the variance of the input signal divided by the quantization noise of the samples in the



sequence. So, fine now this I can rewrite it as. Please note that the quantization noise

associated with the samples of the original signal is the same as the quantization noise

associated with the samples of the different sequence.

Now, so, this is the property of the quantizer, the difference sequence is input to the

quantizer and this is the quantization noise associated with that quantizer. This quantity

out here is known as the processing gain of the DPCM and is denoted by G p and this

quantity out here I would denote it as the quantization noise associated with the different

signal.  To have  a  high  signal  to  quantization  noise  ratio  for  DPCM system for  any

particular quantizer so, this is your quantizer property. What you have to do is try to

increase the processing gain; that means, your design of a prediction filter is to maximize

this ratio that is maximize your.

We have seen that the DPCM consists of 2 blocks, one is basically the quantizer block

and other is the predictor block. Now we know that the quantization noise associated in

the DPCM system is dictated by the quantization noise of the different sequence. So, in

that case what it means that, we could decrease the number of quantization levels in the

quantizer to obtain the same quantization noise, which I would get by quantizing my

original sequence if that is acceptable. So, this better prediction allows you to decrease

the number of quantization levels in the quantizer.

The question is how low can you have this value of quantization level. The lowest value

you can have is 2. So, you have only 2 levels. So, I require only one bit. This form of

DPCM where I use a quantizer of just one bit is known as delta modulation, which we

will study next time.

Thank you.


