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Lecture – 02
Entropy and it is properties

Hello welcome back. So, in the last module we studied what is the information source?

We mathematically define the model for information source. We define the major for

information and we also define the concept of entropy for a discrete memory less source.

So, the Entropy of a discrete memoryles's source was defined as shown on this slide.

(Refer Slide Time: 00:55)

We have a source and it has source alphabet and each of this elements in the source

alphabet is a single or letter, and to each of this symbol we assign the probability of

occurrence.

And for discrete memoryless source the entropy turns out to be this expression, which is

summation of p k log to the base 2 of 1 by p k and the units for this it is bits per symbol.

So, this is the average information, which I get when I observe the output symbol from

the source s. Now, today basically we will have a look at the properties of this entropy.



(Refer Slide Time: 02:00)

So, we will study this property of the entropy, which says that entropy is always greater

than equal to 0 and it is bounded by log to the base 2 k, where k denotes the cardinality

of the set alphabet or the size of the alphabet or you could say the number of symbols or

letters, which are there in the source alphabet.

Now, we know that the expression for entropy is given here. Now, let us look at each of

the term in this expression. So, if you look at this p j log 2 1 by p j, then it is not very

difficult to see that for p j greater than 0 and less than 1, this quantity is always larger

than 0. For p j equal to 1 these is equal to 0 and for p j equal to 0 this quantity again is

equal to 0. Now, for p j equal to 0 to show this quantity is equal to 0, we can use simple

the hospital rule and evaluate that.



(Refer Slide Time: 03:33)

So, just I will flash that the slide to show how to do it. So, you take the limit p j tending

to 0 of this quantity and you continue it very clear from this slide how to proceed? And

you can show that when p j tends to 0 this quantity is equal to 0.

(Refer Slide Time: 04:00)

So, what it means basically that all the terms out here are either 0 or greater than 0. So,

the summation will be; obviously, greater than equal to 0 ok.



(Refer Slide Time: 04:18)

So, p j log 2 1 by p j is equal to 0, if and only if p j is equal to 0 or 1. So, this implies that

entropy of the source is equal to 0, if and only if p j is equal to 1 for some j and all the

rest are 0.

So, H s is equal to 0 will happen when this condition is satisfied; that means, there is no

uncertainty of the output of the source ok. Now, let us try to get the upper bound ok.

(Refer Slide Time: 05:36)

To do that basically will use this relationship between the log x and x minus y. Now, I

have plotted the equation y is equal to x minus 1 and y is equal to log x. So, from this



graph it is very clear and we can see that log x is always less than equal to x minus 1, for

x greater than equal to 0 and they will be equal when x is equal to 1. The mathematical

formal proof is also given here I can form a function as shown here you take the first

derivative and it is second derivative.

And you can show that log x will be always equal less than or equal to x minus 1 correct.

So, x minus 1 is always greater than log x correct this is a fundamental relationship,

which will  exploit  in our module on information theory ok.  So, based on this  let  us

derive the upper bound for this.

(Refer Slide Time: 06:49)

So, proof for the upper bound I will use the relationship log x is less than equal to x

minus 1 for x greater than equal to 0.

Now, consider  2 probability  distributions  in  terms of p s  and terms of q,  both these

distributions are defined on the source alphabet s. Now, we can write this expression p k

log to the base 2 q k p k k is equal to 0 to k minus 1, as log to the base 2 of e and

summation of p k log this log is to the natural base q k by p k let me call this as equation

2.



(Refer Slide Time: 09:00)

So, now using 1, we get the following relationship this is equal to less than less than or

equal to ok. Using 1 this is equal to I can write it and remember these are the probability

distributions  q k s  and p k s.  So,  the summations  both are  1 and this  is  equal  to  0

therefore, I get this relationship.  This is a fundamental inequality, which is used very

often in the literature on information theory.

 (Refer Slide Time: 11:12)

 

And now we see that in this expression equality holds, if q k is equal to p k for all k. So,

let q k equal to 1 by capital K for all k. If we do that than for this probability distribution



over the source alphabet, we will get the entropy of the source equal to log to the base 2

equal to k correct.

So, what it means, that this relationship is always valid provided the conditions on q k

and p k are satisfied. So, using this relationship and using this result, we can conclude.

So, I have proved this is nothing, but the entropy of the source is less than equal to log 2

K fine.  So,  let  us take an example of a binary memoryless  source and calculate  this

entropy.

(Refer Slide Time: 13:32)

 

So, Entropy of a Binary Memoryless Source. So, in this case the source alphabet will be

2 binits 0 and 1 let us assume the probability is p 0 and p 1 will be; obviously, equal to 1

minus p 0. So, the entropy for this source would be equal to minus p 0 log to the base 2 p

0 minus 1 minus p 0 log to the base 2 1 minus p 0.

So, we know that for this case for p 0 equal to 0, you can show that entropy is equal to 0

and for p 0 equal to 1, the entropy is again equal to 0. And based on the earlier result,

which we derived the maximum value of this entropy for a binary memoryless source

would be equal to log 2 to the base 2 is equal to 1 bit 1 bit per symbol correct. So, the

binary memoryless source attains the maximum value equal to 1 bit.

Now, in information theory in literature we come across 1 function, which is very closely

related to the expression given by the entropy of a binary memoryless source. In the



sense if I assume p 0 to be a variable, then I can write this expression as minus p log to

the base 2 p minus 1 minus p log to the base 2 of 1 minus p.

(Refer Slide Time: 16:11)

 

Now, when I do this then this is known as a “entropy function”. And, this is used very

often in information theory fine. Now, so, if you take this H p what are the characteristics

of this  in entropy function, it  is easy to see that for p between 0 and 1 H p will  be

minimum when p is equal to either 0 or 1, and the maximum will be p is equal to half

and the maximum value of this entropy function would be equal to 1.

Now, we can again mathematically prove this correct the procedure is very simple, what

you could do is basically write this function entropy function?
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Take it is first derivative you will get this, you take a second derivative you will get this

second derivative is always less than 0, for p between 0 to 1. So, what it implies that if I

equate this first derivative equal to 0, the p equal to half point gives me the maximum

point correct. And the maximum value is equal to 1 and based on this second derivative

being less than 0, I can also conclude that my entropy function is concave ok.

(Refer Slide Time: 18:30)

Now, given an information source with the source alphabet and the probabilities assigned

to these symbols of this alphabet. If you look at the sequence which we get from here, I



can group some of the symbols into 1 larger symbol correct. So, what I mean to say is

that suppose the output from this source, if I group them or form a subsequence of n

symbols. Then this group or subsequence can take how many values it will be K raised to

n where K is the cardinality of the set alphabet associated with the source s.

So, now I can assume that this new symbols, which I get k raised to n is being emitted

from another source and that source I indicate by what is known as s raised to n for, and

this is known as extension of the original source s and since I have grouped in terms of n

symbol,  this  is  known as  n-th  extension  of  the  source.  So,  I  will  have  new source

represented as this, it will have k raised to n symbols and I am interested in calculating

the entropy of this source extended source.

(Refer Slide Time: 20:47)

 

So, let us quickly see how to do this? So, Entropy of n-th extension of the source; so I

have my original source with the alphabet given as follows, to each of this there is a

probability assigned. Now, this extended source s n will have K raised to n symbols I

denote this symbols by sigma I where I will take value from 0 to K raise to n minus 1.

Now, each of this sigma I that is the new symbol in this n-th extension could be writ10 as

follows it will be S i 1. So, S i 1 can take any symbol from this alphabet then you will

have S i 2. This basically can take again any symbol from this source alphabet and so on.

So, each of these new symbols will have n symbols from the original source alphabet ok.

So now, we will assume that the source is a discrete memoryless source.



(Refer Slide Time: 23:00)

So, if we do this then the probability of sigma i is equal to probability of i 1 multiplied

by probability i 2 up to probability i n.

So, let us calculate the entropy of the source, that would be equal to minus summation p

sigma i,  log to the base 2 of probability sigma i and this should be sum over all the

symbols from the extended source. So, this can be rewritten as, which can be rewritten

again fine. Now, let us look at 1 other term in this expression, let us take the first term

without loss of generality.

(Refer Slide Time: 25:00)



So, if I take the first term this I can write it as and this I can rewrite it as fine. Now, you

see basically that is all these summations are 1. So, and this term out here sorry this is

minus sign out here. So, this term is your entropy of the source. So, going back to this

expression each of this basically is equal to H s and we have n terms like this.

(Refer Slide Time: 26:46)

So, what I get is that entropy of my n-th extension of my original source turns out to be n

times the entropy of my original source.

So, in this class we learned about the properties of the entropy we showed that entropy is

always greater than or equal to 0 it is value. And, it is bounded by the log to the base 2 k

where k denotes the cardinality of the set alphabet. We also examined as an example the

entropy of the binary memoryless source. And, we derived the entropy of an extent n-th

extension of a source and showed that it is equal to n times and showed that, it is equal to

n times the entropy of the original source.


