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Lecture – 26
Step Size & Quantization Noise

We have studied uniform quantization for a input PDF which is uniform, then an uniform

quantizer is an optimum quantizer, in the sense that mean square quantization error will

be  minimum  for  the  given  number  of  quantization  levels.  And  in  this  case  the

Quantization Interval or the Step Size is easily obtained by taking the input range and

dividing it by the number of quantization levels, but if the PDF is not uniform, then this

strategy is not a good one. Let us revisit the example which we had considered earlier.
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So, I have PDF here. The input ranges from minus 100 to plus 100 and between minus 1

to plus 1 the probability  of the input occurrence is 95 percent and in the rest of the

interval is 5 percent. Now, if we deploy the strategy of designing a uniform quantizer

which we use for the uniform PDF, then in this case my quantization interval would be

the range which is  200 divided by 8.  I  am presuming that  we are designing a 3 bit

quantizer that is 8 levels. I will get the step size to be 25.

Now, for this step size this figure out here shows what are the decision boundaries and

what  are  the  reconstruction  levels.  Now,  we  saw  that  for  this  case  the  maximum



quantization error is going to be 12.5 and the minimum error, which we will  get 95

percent of time would be equal to 11.5 and that would happen when the input is between

minus 1 to plus 1, in which case the reconstruction levels are going to be minus 12.5 or

12.5.

Now for such a case the mean square quantization error which we will get, will not be

minimum. So, we said fine let us change the strategy and in a above fashion we decided

the step size to be 0.3. So, if I take step size to be 0.3, then my decision boundaries are

given as 0, 0.3, 0.6, 0.9 and the last one would be 100 and the reconstruction level for the

same would be 0.15, 0.45, 0.75 and 1.05. And similarly you will have on the negative

side, it is a symmetric PDF.

Now, in this case the maximum error you will get is when plus 100, gets quantized to the

reconstruction level 1.05. In that case the maximum error you will get is 98.95 but for 95

percent of the time the maximum error, you will get is 0.15 because the probability of the

input lying between minus 1 to plus 1 is 95 percent.

So, now the next question is how do we decide in general this value of delta. We have

chosen 0.3, suppose example if I have chosen 0.2 or say I have chosen 0.4 what would

happen correct. But the conclusion is that if the source PDF is not uniform, then it is not

a good idea to obtain the step size by simply dividing the input range by the required

number of quantization levels. Let us take and it is important to note that this technique

will completely fail, if my PDF was unbounded. And in a practical scenarios many a

times we do model the PDF of input which is unbounded. And obviously, in this case the

PDF must isentropic go to 0.

And why will it fail? The reason is that we have a infinite domain and we have to cover

up this range with a finite number of step size or quantization intervals. So, this is not

possible. So, in this case will  be required to choose the quantization interval and the

number of quantization levels, such that it achieves a desired means squared quantization

error. So, let us take an example, suppose, I have a PDF of this form which I have given.
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And let me assume that again I want to quantize using 3 bits, so I have 8 level to be

obtained. Now, in this case our reconstruction levels are always going to be the midpoint

of the quantization interval except for the boundary intervals ok. So, for this case I can

show you that this is delta, 2 delta, 3 delta, 4 delta; delta is basically the quantization

interval. What we see from here that in such a case, now the my job is basically to place

this delta where, should I place delta on this axis ok, to that will come later on, but look

here now in this basically you will find that the kind of errors which we will get from;

quantization.

Whenever the input is in this range, or this range this range, or this range it is also valid

on the negative side, you will see that the quantization error goes between minus delta by

2 to plus delta by 2, but once it goes beyond 4 delta, all those values out here from here

onward or this here, they are going to get quantized either to this or to this respectively.

So, in this kind of things you get two types of errors, one what is known as granulary

error or granular noise and other basically what you get is the overload noise. And the

area under this curve basically will denote the granular probability of occurrence and the

area under this curve; obviously, it is on the this side also will be denoted as overload

probability correct.

So, if you have a such a PDF, it is also important to remember that, this 4 delta is not

going  to  be  a  decision  boundary;  DB denotes  the  decision  boundary. The  rightmost

decision  boundary  is  going to  be  plus  infinity  in  a  generic  case  correct  if  I  use  an

unbounded PDF. And similarly on the left hand side minus 4 delta will not be a decision



boundary, but the leftmost decision boundary is going to be minus infinity. So, this is

what is going to happen. 

Now, if you look at if you plot the quantization error, which we will get from this kind of

input PDF, it will look something like this.
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So, up to 4 delta if you see from 0 to 4 delta, whatever I say on the positive side is valid

on the negative side, you will see basically the quantization error goes from minus delta

by 2 to plus delta by 2 correct. So, this is a way it will fluctuate, but once we go beyond

4 delta basically  what happens is basically  the overload noise. So, this basically  is a

granular  noise  and  this  is  the  overload  noise.  And  so,  our  objective  is  basically  to

determine this delta for the given number of levels L and the input PDF such that the

quantization noise gets minimized. So, now what we are going to design is a uniform

quantizer for a non uniform PDF. 
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It is probability density function of the input. So, my problem is to determine the step

size that is delta for a given number of quantization levels that is L, such that your mean

square quantization error gets minimized and the simplest way to achieve this is to write

the distortion,  due to the quantization noise. Let me call  this as a distortion that is a

variance of the quantization noise as a function of the step size delta and then minimize

this function ok.

(Refer Slide Time: 11:12)

So, we know that quantization noise expression is given by this, where b j’s are decision

boundaries y j is a reconstruction level and n is the number of quantization levels which

we have. Now, we have to find an expression for this variance in terms of delta. So, what



we have to  do is  basically  we have  to  replace  this  decision  boundaries  b j  and the

reconstruction levels y j as a function of delta. And it is not very difficult to do this, I will

show you. We will assume one more thing. We will assume that our PDF is symmetric. 

So,  what  this  implies  that  computation  of  the  mean  square  quantization  errors,  for

positive value of X and for the negative value of X will be identical correct. And for our

design we will assume that we are using uniform midrise quantizer correct. So, in this

case basically your decision boundaries b j’s are going to be integral multiples of your

delta correct, n denotes the integer value fine.

(Refer Slide Time: 13:13)

So, I can denote it something like this. I have a line here and I am supposed to divide this

into the intervals delta. So, let me call as a delta, this is 0, 2 delta, 3 delta. And let us

assume say for example, L equal to 8, I would be required to find out this delta, 2 delta, 3

delta. So, for this I will get my reconstruction levels to be here midpoints correct and

other would be ok. So, this is 4 delta. So, once I have my deltas I can easily find out my

reconstruction level. So, in this case basically what will happen is your, we are assuming

unbounded PDF. So, your for b L is going to be plus infinity and your b 0 boundary is

going to be minus infinity correct.

So, these are your decision boundaries and this green ones are your reconstruction levels.

So, let us write the distortion as a function of delta and then try to minimize it with

respect to delta fine. So, quickly we write this your noise variance. Now, as we said we



are using uniform quantizer and midrise. So, your y j for the interval j minus 1 delta, j

delta is going to be a simply 2 j minus 1 delta by 2 because, once you have this is a mid

halfway between this will be your reconstruction level.
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Now, since we are assuming that PDF is symmetric. We can simplify this expression to

the following expression; 2 because symmetry. So, I am going to design only for my

positive side of the PDF, your reconstruction level is 2 k minus 1 by 2 delta and averaged

it. This is what you will get up to this point. In this all these intervals you will have

granular noise quantization noise, beyond this, you are going to have the overload noise.

So, for that basically we are going to write this expression. 

So, this portion corresponds to the granular noise and this portion corresponds to the

overlord noise. So, now what we had to do is basically we had to take the derivative of

this quantity, with respect to delta and equate to 0 to solve for the optimum value of

delta. Now to do this basically it is also important to realize that this 2 noises the way it

behaves.
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If you plot it the granular noise will increase with the size of your delta, higher the value

of delta the granular error will increase and what we will get basically for the overload

noise you will find that it will decrease as the delta increases.

So, if you take the total error would be this curve. So, you can show that basically it will

have a minimum value. And what would be the optimum value? So, if you take f 1 x

denoting say the granular noise and this overload noise you are to take the derivative of

this, this is a function of delta. So, you have to take the derivative of this with respect to

delta, I am just writing in terms of x here. So, if you try to take the derivative of this,

what is going to happen basically that this condition will get satisfied correct; that means,

the slope this slope and this slope basically they will be negatives of each other correct.

So, something like this I have here. So, at that point so, if you look at this point basically

this slope and this slope, they are magnitude wise they are exactly equal and at this point

basically you will get the value of delta optimum correct ok. So, now, to solve this we

will require to take the derivative of this quantity out here.
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Now to do this  basically  we will  have to use one theorem from calculus and that  is

known as Leibnitz’s rule which states, that if a x and b x are monotonic, then if you have

this function out here, which I have shown in the bracket and if you take the derivative

with respect to x correct. This x has got nothing to do with our PDF correct.

So, this is general x; so, if you take the derivative of this is the relationship you get

correct. So, if you use this relationship and take the derivative of this let us see what

happens. It is important to realize now, this k delta is going to appear in this summation

in two places, one which I have shown here, the other place it would be k delta would

come here and here it would be k plus 1 delta correct is it ok, fine. Now, let us try to do

this take the derivative of this. So, when we are taking a derivative of this term of this

whole term, let us take a derivative of each of this term k equal to 1 to up to L by L by 2

correct.
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Now, so, in this derivative operation we will see basically that we would be required to

take a derivative of a term like this. Now, if I take a derivative of this, now it is function

of delta I will take a derivative of this term with respect to this ok. Now, it is very easy to

see here by this Leibniz’s rule, I will have to take the derivative of this term with respect

to delta which I have done here, it is minus 2 x minus 1 this quantity will come and has

to be integrated with this correct. So, this is the first term which I have taken here, this

corresponds to this term out here fine, this I call it as a first term.

The next term basically I have to evaluate this look here, I have to evaluate this and take

the derivative. So, this derivative is nothing but here k. And similarly here this is nothing

but k minus 1 fine and this I have to evaluate. So, I have to just substitute this values out

here. So, I will substitute here, for this case k delta l substitute in place of x, I substitute

here k delta fine. Similarly I do for k minus 1. Now, remember this if you evaluate this

comes out to be delta by 2 square and this quantity comes out like this fine.
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Now, remember one more thing. There will be another term where k delta will appear

correct and that is here, k delta has come up here and then this will be k plus 1 delta.

Now, again I have to take a derivative of this term. So, if I take the derivative of term

again I get this derivative, so, I take the derivative of this. So, the I have to take the this

is a function phi of x and delta. So, I am taking the derivative with respect to delta, I will

get this one term again. And then again then solid using Leibniz, I will get this term and I

will get this term and I just simplify this, I write it out this is the first term so, I do not

want to write it rewrite it here.

So, I  have written just  first  term and you just  evaluate  this  I  come I get  this  value.

Important thing to note that this term basically, here it appears with minus sign and here

it appears with the plus sign and this all summation. So, what will happen that this term

will get cancelled with this term correct? Similarly, this term would have got canceled

with the earlier one and this term will get cancelled with the following term correct. So,

all these terms will get cancelled and what will happen at the boundary points, at the

boundary points remember that when we are trying to evaluate, this quantity out here,

will turn out to be 0 at the boundary point correct.

So, finally, what will happen? Only this first term will remain from each of this term in

the summation ok.

(Refer Slide Time: 23:52)



So, and that is what we can write it here if I take the derivative of this what I will get is

correct. So, I will get this and then from the last term I will get this. So, this is what I will

get and this I have to equate to 0. Now this looks like a very messy equation, now the

only way to solve this is basically using a numerical technique for this correct fine. So,

now if you do that basically some of the results are available in the literature for the

known PDF’s. So, I will just show you here.

(Refer Slide Time: 25:47)

So, if you take for example, different levels is known by alpha alphabet size 2 4 6 up to

32. And if you take the uniform PDF and if you take a Gaussian PDF and Laplacian PDF

and if you try to evaluate this delta here, it is assumed that the variance of the input is



equal to 1 correct. So, that is normalized to unit variance and if you evaluate this for step

size 2; that means, two levels you will get you have to calculate only one this is basically

you  will  get  1.732  that  is  the  step  size  which  you  will  get  and  you  will  get  two

construction reconstruction levels.

And then you can also calculate the signal to noise ratio, the quantization signal to noise

ratio by signal power basically you can find out using the variance to be equal to 1 for all

these cases is assumed. And then if you do this basically this is the results which you get

from here. Now, there is something very interesting to be observed, I have given the

references out here, these are the references from which you can have a look at it and see

the table is the same as what I have given here.

Now, that is a interesting thing, now it is important to know that Laplacian PDF has more

of it is probability mass away from the original. And it lies in it is tail, then the Gaussian

PDF correct. So, what that implies that for the same delta and the number of quantization

level L, there is a higher probability of being in the overlord region, if the input has a

Laplacian PDF, then if the input has a Gaussian PDF correct. And so, the tail is heavy for

the Laplacian PDF compared to the Gaussian PDF ok. And then what it implies that the

for same number of quantization levels here, if now delta increases then the size of the

overload region also decreases correct. And, hence the overload probability decreases.

So, what this implies that the overload noise will decrease at the expense of increase in

the  granular  noise.  Therefore,  for  a  given number  of  levels,  if  delta  is  calculated  to

balance the effect of both this granular and overload noise, then PDF’s that have heavier

tails like Laplacian compared to say Gaussian will tend to have larger step size. And this

is very clear from this table, which I have here look for the example 16 levels. As you

keep on moving here the tail  becomes heavier. So, for the same number of L that is

quantization  level  you will  find  that  this  size  basically  increases,  the  delta  increases

correct.

So, this delta is higher than this and this delta is higher than this because Laplacian has

heavier tail  fine ok. So, please remember this table  is only assuming that your input

signal  variance  is  equal  to  1.  Now,  the  next  question  is  how  practical  are  these

quantizers? It is important to note that this quantizers design for specific PDF. So, if the

PDF changes there will be a mismatch and you could have severe degradation due to this



mismatch. So, the mismatch could be that I have a right PDF, but I do not have a proper

estimate of its variance, then the value of delta which you will get will be wrong. So, the

performance of that quantizer is going to degrade or you could start with the wrong PDF

itself correct. And then also the performance will degrade.

So, the next question is that I have designed a uniform quantizer for a non uniform PDF,

the obvious question is it  necessary for me to make this quantize and step also to be

uniform, is it not possible for me to have this variable correct. For example, if I know

that my input data lies mostly about the origin, then should I not allot more number of

quantization levels near the origin? So, we will try to answer these questions, in the form

of  a  very  generic  design  of  a  quantizer  and  that  is  what  is  known as  non  uniform

quantizer which we will discuss next.

Thank you. 


