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Pulse Code Modulation : Quantization

We begin our study of the module on Pulse Code Modulation, popularly known as PCM.

In continuous wave modulation some parameter of a sinusoidal carrier wave is varied

continuously  in  accordance  with  the  message  signal.  This  is  in  contrast  to  pulse

modulation in which some parameter of a pulse strain is varied in accordance with the

message  signal,  there  are  two  families  of  pulse  modulation:  these  are  analog  pulse

modulation and digital pulse modulation. In analog pulse modulation a periodic pulse

strain  is  used  as  a  carrier  and  some  characteristic  feature  of  each  pulse;  example,

amplitude duration, or position is varied, in a continuous manner in accordance with the

corresponding sample value of the message signal.

Thus in analog pulse modulation information is transmitted basically in analog form, but

the  transmission  takes  place  at  discrete  times.  Digital  pulse  modulation  in  this  the

message signal is  represented in a form, that is  discrete in both time and amplitude.

Thereby permitting transmission of the message in digital form as a sequence of coded

pulses, this form of modulation is also known as pulse code modulation. So, the use of

coded pulses for the transmission of analog information bearing signal, represents a basic

ingredient in digital communication. So, PCM in basic form could be considered as a

conversion  of  analog waveforms into coded pulses.  As such this  conversion may be

viewed as the transition from analog to digital publication.

In some sense the term modulation in PCM is a misnomer. In reality PCM is a source

encoding  strategy, by  means  of  which  an  analog  signal  emitted  from a  source  gets

converted  to  a  digital  form.  Transmission  of  the  digital  data  so,  produce  is  really  a

different topic. Now, we will quickly study the basic functional blocks of PCM system

and, which is shown in the figure here.
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So, we have the input x t which is band limited to some bandwidth say W and it is a low

pass nature. This passes through a filter which is a low pass this basically is a filter which

limits  the bandwidth of the input signal to W and, helps in mitigating the effect of a

lysing error due to sampling. So, this is also known as antialiasing filter. This is a block

which is known as sample and hold, in this block basically we carry out what is known

as flat top sampling.

The sampling rate is basically decided by the Nyquist sampling theorem, which states

that the sampling frequency should be greater than equal to twice the bandwidth of the

band  limited  low  pass  signal  for  perfect  reconstruction.  So,  usually  the  sampling

frequency is chosen higher than the Nyquist sampling rate, in order to provide some kind

of guard band against the aliasing error.

Then the output of this basically is the discrete values, which have been sampled at the

time instant t equal to k T S. L level quantizer basically rounds off the sample values to

the nearest discrete value in a set of L levels. The resulting quantized samples which is

denoted x q k T S are discrete in time by virtue of sampling and discrete in amplitude by

virtue of quantizing.

Next we have the encoder. The encoder translates the quantized sample into digital code

words, the encoder works with M-ary digits and produces for each sample a codeword

consisting of n digits in parallel. Since there are M raise to n possible M-ary code words,



with n digits for word unique encoding of the L different level requires that M raised to n

should be greater than equal to L.
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So, the parameters M N and L should satisfy the equality. There is a number of levels for

binary PCM must be equal to some power of 2 because, M is equal to 2. So, in that case

you will get L is equal to 2 raised to n. 

Finally successive code words are read out serially to constitute the PCM waveform,

which is nothing, but M-ary digital signal. The PCM generator there by x as a analog to

digital converter performing the analog to digital conversion at the sampling rate decided

by f S. A timing circuit coordinates the sampling and parallel to serial readout.

Now, let us consider a PCM receiver with the reconstruction system shown in this figure.
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The received signal may be contaminated by noise, but regeneration yields a claim and

nearly errorless waveform, if the input signal to noise ratio is sufficiently large. Now, the

digital to analog conversion operations of serial to parallel M-ary decoding and sample

and hold generate the analog waveform, which we denote by x q t.

This waveform is a staircase approximation of the original message signal x t similar to

flat top sampling, except that the sample values have been quantized, low pass filtering

then produces the smooth output signal, which we denote by y D t, which differs from

the message signal  x t  to  the extent  that  the quantized  sample  differ  from the exact

sample values x k T S. So, perfect message reconstruction is therefore, impossible in

PCM even when random noise has no effect.

Now, the most important component of this PCM is basically the quantization and, we

will  focus our study of PCM on to this quantization problem. Now, in real  practical

scenarios  this  process  of  quantization  an  encoding  is  basically  carried  out  by  one

hardware  block.  So,  for  our  study  we  will  assume  that  this  two  blocks  have  been

combined has  one  block and,  this  also helps  us  in  formulation  of  a  generic  optimal

quantizer design problem.
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We will study now the quantization problem. In practice and structurally to the quantizer

consist of two mappings, one the encoder mapping, which takes place at the transmitter

and the other is basically decoder mapping, which takes place at the receiver. 
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Now, let  us see what does an encoder do. Encoder partitions the amplitude range of

continuous signal. So, let me denote that continuous signal on this axis and, it will divide

this  range into  L intervals  let  me denote  this  intervals  here.  So,  each  of  this  is  the

interval, this is the interval we will call it as I j minus 1, this is the interval which is



corresponding to I j; so I j interval determined by the decision boundaries also known as

decision levels.

So, b j minus 1 and b j is basically the decision boundaries for the interval I j minus 1.

And similarly b j and b j plus 1 is are the decision boundaries for the interval I j. So, we

can denote I j the interval as consisting of all the input signal values, which we denote by

x such that x is greater than b j and less than or equal to b j plus 1, for j equal to 1 2 up to

L, where L is the number of intervals in which we are interested.

So,  the  next  task  of  the  encoder  is  to  represent  all  the  source  output  that  fall  in  a

particular level by the code word representing that interval. So, an example is given here.
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So, this is the encoder mapping for a quantizer with 8 intervals shown in this figure. So,

for this encoder all the samples with values between minus 1 to 0 would be assigned the

codeword 0 1 1. And similarly all the values between the interval 1 to 2 will be assigned

the codeword 1 0 1. As there could be many possibly infinitely many distinct sample

values  that  can  fall  in  any  given  interval,  the  encoder  mapping  is  irreversible.  So,

knowing the code only tells us the interval in which the sample value belongs, it does not

tell  us which of the many values in the interval is the actual sample value, when the

sample value comes from an analog source the encoder is called as analog to digital

converter.
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Now, the next task of the quantizer is basically the decoder mapping. Decoder represents

all the signal amplitudes in the particular interval say I j, by some amplitude say let us

call it as y j, which belongs to the interval I j, and this is referred to as the representation

level, also known as reconstruction level. The spacing between two decision boundaries

is  called  the  step  size.  Now, so  for  every  code  word  generated  by  the  encoder,  the

decoder generates a reconstruction value.

Now, it  is  important  to  remember  that  a  codeword  represents  an  entire  interval  for

example, in this case. And there is no way of knowing which value in the interval was

actually generated by the source. The and therefore, the decoder puts out a value that in

some  sense  this  represents  all  the  value  in  the  interval  which  is  known  as  the

representation level, or reconstruction level. Later we will see how to use information we

may have about the distribution of the input in the interval to obtain this representation

value. 

For now we simply use the midpoint of the interval, as the representative value generated

by the decoder. So, if the reconstruction is analog, then the decoder is often referred to as

a digital  to analog converter. A decoded mapping corresponding to the 3 bit  encoder

shown here, would be something like this.
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 This values reconstruction values have been chosen as the midpoint of the intervals. So,

between minus 2 to minus 1, we choose the reconstruction value to be minus 1.5 so, 0 1

0 code word at the receiver will be decoded as minus 1.5 correct. 

So,  it  is  important  to  now  know that  construction  of  the  intervals;  that  means,  the

locations  can  be  viewed  as  a  part  of  the  design  of  the  encoder,  selection  of  the

reconstruction value denoted by y j is a part of the design of the decoder. However, the

fidelity  and  accuracy  of  the  reconstruction  depends  on  both  the  intervals  and  the

reconstruction value, we call this encoder and decoder pair as quantizer. 

So, to specify a quantizer we need to know how to divide the input range into intervals;

that means, the site these boundaries b j minus 1 b j b j plus 1 and so on, assign code

words to this intervals and find representation or output values for this interval. We need

to do all this while satisfying,  what is known as distortion and rate criterion.  So, the

distortion is defined as average squared difference between the quantizer input and the

quantizer output. So, this is basically known as mean squared quantization error and, we

will denote it as by sigma suffix q raise to 2. And there is another criteria which is the

rate  and,  that  is  the  average  number  of  bits  required  to  represent  a  single  quantizer

output.



Now, for our study we will assume this we carry out the encoding using the binary digits.

And whenever I say bits it does not mean information theoretic point of view here, I

mean bits means binary digit ok.

So, given this our design problem is obtain the lowest distortion for a given rate of the

quantizer, or the lowest rate for a given quantizer. So, let us try to formulate this design

problem in more precise term.
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So, assume that we have an input model by a random variable x with it is pdf, given by f

X. And let us assume that this pdf is uniform and it ranges between minus X max to plus

X max as shown here. So, this height will be 1 by 2 X max. So, that the pdf integrates to

1. 

Now, what we are required is to quantize; this show with L intervals, we have been given

the value of L. So, now, we are required to specify L plus 1 end points for the intervals

and a representative values for each of this L intervals. So, let us denote the decision

boundaries by b j j goes from 0 to capital L, will denote the reconstruction levels by y j j

goes from 1 to L. And we will denote the quantization process as follows, capital Q with

this symbol.
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Then our problem is that Q x, that is the output of the quantizer to the input value x

would be equal to the reconstruction level y j. If and only f, if your input x satisfies this

inequality. If this happens then in such a case, we can calculate the variance or the mean

squared error as follows. We have x minus Q x has the error and as a distortion measure,

we will use the square of it.

And this has to be integrated with respect to the pdf of x from minus infinity to infinity,

this  can be rewritten as follows based on the model which we have selected for the

quantizer. Now, this quantization process can be modeled as an additive noise process. 
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So, we have the input to the quantizer. And we have the output of the quantizer and the

output; obviously, is not equivalent to input. So, there is a noise there and, we call this

noise as quantization noise. So, this difference x minus Q x is known as quantization

error, or quantization distortion, or quantization noise.

Now, if we use fixed length binary code words to represent the quantizer output, then the

size of the output alphabet, immediately specifies the rate of the quantizer and that would

be given by R, this is a pulse ceiling of log to the base 2 of the number of levels which

we have specified for the quantizer that is L. So, if L is 16 we get R equal to 4. So, if we

assume fixed length binary code words, then we can pause our quantizer design problem

as follows.
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Given  an  input  pdf  and  the  number  of  levels  L in  the  quantizer,  find  the  decision

boundary is b j, j equal to 0 to L and the reconstruction levels y j, j equal to 1 to L so, as

to minimize the mean squared quantization error given by this expression.

Now, if you are allowed to use variable length coding, such as Huffman coding. Now,

what will happen with the size of the alphabet, the selection of the decision boundaries

will also affect the rate of the quantizer. To understand this let me take one example.
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Let  us  say I  have a  code word assignment  for  a eight  level  quantizer, these are  the

reconstruction levels and, these are the code words which have been assigned to this.

Now, according to this code word assignment y 5 uses 2 bits, y 2 uses 4 bits to encode it.

Now, the average rate will depend on how often, we have to encode y 5 versus how

often,  we  have  to  encode  y  2.  So,  average  rate  will  depend  on  the  probability  of

occurrence of the outputs.
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And this can be calculated as follows rate would be equal to L j is the length of the

codeword,  multiplied  by the  probability  of  that  code  word that  is  the  probability  of

occurrence of y j reconstruction value. So, j is equal to 1 to L. Now, probability of y j

itself is nothing, but as follows this is the pdf integration over the range b j minus 1 to b

j. So, what this shows that this probability p y j is function of the boundaries correct. So,

the rate can be written as follows. 
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So, now for the quantizer we have two parameters, one is the mean square quantization

error given by this expression and, other is the rate given by this expression. So, we

observe that a for a given source input the partitions we select that is the intervals will

select given by these boundaries and, the representation for this partition will determine

the distortion incurred during the quantization process.

And the partitions we select and the binary codes for these partitions, will determine the

rate of the quantizer. Therefore, the problem of finding the optimum partition codes and

representation  levels  are  all  linked.  So,  if  you  understand  this,  let  us  restate  the

optimization problem for the quantizer as follows.
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Given a distortion constraint in this form, where I say that mean square quantization

error should be less than some D star, then find the decision boundaries reconstruction

levels and binary codes, that minimize the rate given by this expression while satisfying

this constraint. So, this is one form of optimization.
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The other form of optimization would be given a rate constraint, I say that rate has to be

less than some R star, find the decision boundaries reconstruction levels and binary codes

that minimize, the distortion given by this expression while satisfying equation 2.



Now, this both the problem statement of quantizer design, are more general than our

initial statement, but it is substantially more complex, but fortunately in practice there are

situation in which we can simplify the problem. We often use fixed length code words to

encode the quantizer output. In this case the rate is simply the number of bits used to

encode each output and, we can use our initial statement of optimization which was as

follows. So, given an input pdf and the number of levels L in the quantizer, find the

decision boundaries and the reconstruction level so, as to minimize the mean square error

given by this expression correct.

Now, we will start our study of quantizer design by looking at this simpler version of the

problem and later on, we will use this concepts to attack the more complex version. So,

next time we will start our design of quantizer with a uniform quantizer.

Thank you.


