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Welcome back, with this module we will begin our study of Information Theory. The

purpose  of  a  communication  system is  to  transmit  signals  generated  by  a  source  of

information  over  a  communication  channel,  but  what  do  you  mean  by  the  term

information? To address this important issue we need to understand the fundamentals of

information theory. Let me take 1 illustrative example to highlight the importance of the

role of information theory in a communication system.

So, let us say we have 2 cities A and B, the weather conditions in both the cities change

very rapidly during the day. And, it is require to transmit every half an hour or show, the

status of the weather condition in both the cities. So, let us see how do we do this?.

(Refer Slide Time: 01:25)

I have city A and there are 4 weather conditions; sunny, cloudy, rainy, and foggy. And for

city B there are 4 weather conditions; sunny, cloudy, rainy, smoggy. The only difference

being foggy and smoggy, from the communication perspective both these cities generate

4 messages.



So, let  us take the transmission of the weather  condition  from city  A to headquarter

weather station located in city C and similarly we will do for transmission of messages

from B to C. We, will use binary digits for the transmission I will use the word binit for

binary digits.  Let me also assume there the probability of occurrence of each of this

message is given as one-fourth, one-fourth, one-fourth and one-fourth.

Now, using the binits, I want to label these messages. So, 1 way of doing it would be as

follows I give this as 0 0 0 1 1 0 and 1 1, this labels which I have assigned for each of

this messages are also known as code words and the set of the code words corresponding

to each of the messages is known as a code. Now, for cost effective communication it is

desirable to have this binits per message as low as possible.

So, what would be the average length of this labels or code words, that would be given as

follows an average is equal to we have 2 binits for the first matches and the probability is

one-fourth  plus  2  multiplied  by  one-fourth  plus  2  multiplied  by  one-fourth  plus  2

multiplied by one-fourth and this gives us 2 binits per message.

Now, let us take the case of message transmission from city b to city C. And let me

assume that  the probability  of occurrence of this  weather is as follows sunny is  half

cloudy is one-eighth rainy is one-eighth and smoggy is one-fourth. Now, in principle I

could have use the same labeling as I did in the case for transmission from A to C and I

could have assigned 0 0 0 1 1 0 1 1, but if I do that way it is easy for you to see that the

average length, which I will get will turn out to be again 2 binits per message.

But, in this case I can use a simple common sense logic and do the labeling as follows

the the logic is that the messages which occur very frequently, I will choose those labels

which have smaller length. So, for sunny I will assign a 0 for smoggy I will assign as 1 0

and rainy I will assign 1 1 0 and this I will assign as 1 1 0. Now, it is also important to

note that this labeling, which I have done this mapping from the message to the labels is

unique in the sense given any of the labels out here I can say what was the message

transmitted?

Now, if we calculate the average length in this case it will turn out to be 1 multiplied by

half plus 4 multiplied by 1 eighth plus 3 multiplied by 1 eighth and 2 multiplied by one-

fourth and you can show that this turns out to be 15 by 8 binits per message. So, what I

have shown that using this kind of a clever scheme of labeling, I could save about 1 by



eighth binit compare to this kind of labeling which I did for A to C. So, this is a roughly

about 6 percent of saving.

So, the question that comes to my minds are following is it possible for me to use a better

labeling scheme and bring down this  value still  lower, because I  desire  that for cost

effective communication. And, if I can do this what is the lower bound or limit to, which

I can reach and even if I can calculate the theoretical lower bound for that how do I

achieve that in a practical scenarios. Now, in this case is possible to show that is the

better scheme than this and we can get further savings, but we will take up this problem

later on as we learn information theory.

So, there are 2 key aspects in performance evaluation of a digital communication system.

These  are  first  the  efficiency  with  which  information  from  a  given  source  can  be

represented and the second the rate at which information can be transmitted reliably over

a channel. The fundamental limits on this key aspects of system performance have the

roots  in  information  theory  information  theory  was  founded  by  1  of  the  scientist

Shannon. And, the first white paper in information theory was published way back in

1948.
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And, the title of the paper was “A Mathematical Theory of Communication” and it was

published in 2 parts in bell system technical journal, volume 27 in the year 1948.



So, given a information source and noisy channel information theory provides the limits

on the following 1 the minimum number of bits per symbol required to fully represent

the source.
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And, the second is the maximum rate at which reliable communication can take place

over  the  channel.  In  the  context  of  communication  information  theory  deals  with

mathematical  modeling and analysis  of a communication system rather  than physical

sources and physical channels.

Let us look at the mathematical models for information source.
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So, any information source let me depicted here by capital S produces an output, that is

random that is the source output is characterized in statistical terms. If the source output

was known or deterministic I need not transmit and there are 2 types of sources; 1 is

analog source an example of that would be the audio and speech signals. And the second

is the discrete source an example of that would be the output from computer and storage

devices.

We will study both these sources analog and discrete and postulate mathematical models

for each type of this source. So, let us start with discrete information sources.
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So, the simplest type of discrete source generates or emits a sequence of symbols or

letters selected from a finite source alphabet for example, a binary sequence of the form

0 0 1 1 0 1 the alphabet for this is the set 0 and 1. So, these are the 2 symbols or the

letters  of  this  alphabet  more  generally  a  discrete  information  source  would  have  an

alphabet of k possible letters or symbols for example, S 0 S 1 S 2.

. So, this alphabet corresponds to another discrete information show, where there are k

letters or symbols. So, when this alphabet contains a finite number of symbols in this

case k symbols the source is said to be a finite discrete source. An example would be

output of a 12 bit D to A converter. So, this outputs 1 of 4 0 9 6 discrete levels, another

example would be output of a 16 bit A to D converter.

In this output is 1 of 2 raised to 16 binary 16 tuples. So, to construct a mathematical

model for a finite discrete source we assume that each letter in the alphabet like what I

have shown you here; S 0 S 1 S 2 up to S K minus 1 has a given probability p k of

occurrence.
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That is p k is equal to probability of the output of the source or that probability of the

event  is  equal  to  S  k  for  k  equal  to  0  to  capital  K  minus  1,  and  ;  obviously,  the

summation of p k overall capital K should be equal to 1.

So, a finite discrete source is defined by the list of symbols or letters this list is known as

alphabet,  and  the  probability  assigned  to  these  symbols  or  letters  there  are  two

mathematical models of discrete source
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 One the output sequence from the source is statistically independent. In such a case we

say that  the source is  a  memoryless  source.  So,  we have what  is  known as  discrete

memoryless  source  and  we could  have  another  discrete  source,  where  the  output  is

statistically dependent the example of this could be English text.

So, given a symbol or letter q in English text most probably the next symbol or letter is

going to be u. So, the occurrence of u basically is influenced by the occurrence of q or if

I have text English text as th, then the next occurrence of the letter is more likely to be e

a i o u r what I want to convey is that there is a statistical dependency among the symbols

or  letters,  which  are  being  generated  or  emitted  from the  source  during a  particular

signaling interval.  So, the next question is can we measure how much information is

generated by a source which has been defined mathematically as we have done now.

And, we will see that the idea of information is closely related to that of uncertainty or

surprise.
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So, let us consider the event S is equal to S k with the probability of it is occurrence p k.

Now, if p k is equal to 1 and pi is equal to 0 for all i not equal to k, then whenever this

event occurs there is no surprise and there is no information gain, but from the same

source if the probabilities of this symbols or letters were unequal. Then whenever s is

equal to S k occurs and let us assume that, p k is low then in this case there will be more

surprise or more information. When this event occurs compared to the occurrence of any



other event where the probability of that event is higher than the probability of this event

S is equal to S k.

So, what it means that the concept of uncertainty surprise information are all related. So,

before the event S is equal to S k occurs there is amount of uncertainty. When the event S

is equal to S k occurs there is a amount of surprise. And, after the occurrence of this

event S is equal to S k, this uncertainty which we had before the occurrence of event gets

resolved or we can say there is gain in the information.

So, the amount of information is related to the inverse of the probability of occurrence of

that event. So, 1 measure for defining information could be as follows.

(Refer Slide Time: 23:24)

. So, whenever the event S is equal to S k occurs I could say the amount of information

gained after observing this event S is equal to a S k is by definition equal to logarithmic

of 1 by p k. Now, this definition of low battening 1 by p k has important properties that

are intuitively satisfying.

Let us take the first property information I get when the event S is equal to S k will be

equal to 0 for p k equal to 1, because in this case we are certain of the outcome of an

event even before it occurs and therefore, no information is gained and this metric of the

measure  and this  measure  of  the  information  also  conveys  the  same.  The second  is



basically this is greater than equal to 0 for 0 for p k greater than 0 and less than equal to

1.

So, what it means that it provides some or no information, but no loss of information.

The third is I S k is greater than I S j for p k less than p j. So, what it means that less

probable event the more information be gain when it occurs. And finally, because of this

measure if you have 2 independent events S k and S j, then the joined information which

I get from this is equal to the information which I get from the occurrence of event s is

equal to S k and from the occurrence of the event S is equal to S j which again intuitively

is satisfied.
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We have this measure for information whenever event s is equal to S k occurs as by

definition log of 1 by p k, what is the base of this logarithm? It is more natural to use to

the base 2 and when you use to the base 2 then the units of measurement of information

is  given  in  terms  of  bits.  So,  whenever  event  s  is  equal  to  S  k  occurs  I  get  the

information, which is given by this quantity what is the significance of the base 2 is as

follows if I have a source, which emits only 2 messages or 2 symbols or 2 letters for

example, tossing of a coin the outputs are head or tail.

And,  if  you  assume that  probabilities  of  occurrence  of  both  of  this  are  equal,  then

whenever head or tail occurs the information I get from it is equal to 1 bit. Now, we

know that if I have an output which is binary like tossing of a coin, then to physically



represent this output in terms of binary data I require 1 binary digit. So, this measure of

information correlates with our physical understanding of a process fine. Now, the next

question  is  given  this  definition  for  information  measured  for  the  occurrence  of  a

particular event, how do I generalize to the case where I want to calculate the average

information, which is being generated a emitted from the source.

Now, it is very easy to do that if you realize that I S k is a discrete random variable. So,

in this case we will have this I S k taking different values as follows is 0 I S 1 up to is

capital K minus 1. And each of this will occur with probabilities given by p 0 p 1 and p

capital K minus 1.

So, we can find out the average of this value as follows this would be equal to I S k

multiplied by the probability of this random variable, which is equal to p k. So, if I do

this I get this as and so, this is the average information in terms of bits per source letter

or  symbol  and by definition  this  is  known as  the  entropy  of  a  discrete  memoryless

source.

So, in this module we have studied what is a discrete information source, how to measure

information, and the definition of entropy for a discrete memoryless source.

Thank you.


