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Vector Representation of a Random Process

In Digital  Communications  we are concerned with the transmission of one of the M

messages generated by an information source. This message gets transmitted by using

one of the M message signals of waveforms. Now, at the receiver what we receive is

basically a noisy version of this message signal, the goal of the receiver is basically to

detect which one of the M message signal was transmitted in the presence of noise. 

Now, this  signal  detection  problem and  determination  of  the  optimum receiver  gets

simplified,  if  we could represent signals in terms of vectors.  Now, if  we assume the

additive noise model of the channel, then your received signal is equal to the message

signal plus the noise signal. 

Now, we know that given a set of message signals, we can always generate a complete

orthonormal basis signals for this set. So, I can represent each of the message signals in

terms of a vector. So, now, if you could represent the noise signal also in term of vectors,

then our detection problem will get simplified ok. 
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So,  now we start  our  study with  M-ary Communication  in  the  presence  of  Additive

White Gaussian Noise. And the first thing we will do is basically is to look at the vector

representation of a random process fine.
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 So, let us consider a complete orthonormal set of basis signals, phi k t for a signal space

defined over the interval a b correct, then any deterministic signal S t in this signal space

will satisfy the following condition, where your S k is the production of S t over the this

is signal phi k t, this is also denoted as follows ok.



Now, this implies that for any t in the interval between a and b, we have the equality S t

is  equal  to  correct.  Now, for  random processes  defined over  the  interval  a  to  b this

statement is generally not true. So, we require certain modifications and let us see what

are those.
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So, our goal is now to determine basis function for a random process or basis signals ok.

So, first of all a general random process X t cannot strictly satisfy the following equation,

correct instead a proper convergence requirement is in the mean square sense, what it

means that it satisfies this equation..
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Now, this equality can be denoted as X t is equal to X k phi k t over all k, but this is

equality in the mean square sense. So, if you have two random processes X t and Y t and

if  we say that these two random processes are equal  in the mean square sense,  then

practically the difference between X t and Y t random processes have 0 energy correct.

So, as far as we are concerned in communications signals, or signal differences with 0

energy have no physical effect and can be considered to be 0 ok. For set of deterministic

signal the basis signals, can be derived why are the Gram Schmidt orthogonal procedure

which we have studied earlier correct.

However, Gram Schmidt procedure is invalid for random processes correct. A random

process is an ensemble of signals. The basis signals for this random process will depend

on the characteristic of the random process. There are many ways in which a random

process can be expanded in terms of a sequence of random variables and orthonormal

basis phi k t. 

Now, if we require the additional condition that the random variable X k be mutually

uncorrelated,  then  the  orthonormal  basis,  have  to  be  solution  of  an  Eigen  function

problem given by an integral equation whose kernel is the autocorrelation function of the

random process and, it will be given as follows. 
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So,  in  this  your  auto covariance  function  C X t  1  comma t  2  is  by definition,  auto

correlation function minus the means. So, where your means are defined as follows, this

is the expectation of the random process X t correct, this is the auto correlation of the

random process correct. And this is a kernel function, in this equation correct. 

So, solving this integral equation results in the orthonormal basis phi k t and projecting

the random process on this basis results in the sequence of uncorrelated random variables

X k ok. So, you are here this function once you get you have to normalize it properly. 
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So, this condition is satisfied and then the K L expansion, this is known as Karhunen-

Loeve or K L expansion and, it is given as follows correct. So, this equality is in the

mean square sense it is important to note that please ok. 

So, now if your random process has 0 mean correct, then you could substitute it though

auto covariance function by autocorrelation function and, then it would be something

like this correct.
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So, these are known as Eigen values and this is known as Eigen function. So, in this case

basically this autocorrelation function becomes your kernel function correct. Now, what

it  says  basically  that  given  a  random process  and,  if  you  desire  the  coefficients  of

expansions, which are going to be random variables to be uncorrelated, then this basis

function basically are obtained by solution of this integral equation; that means this basis

function cannot be selected arbitrarily correct. And depending on the random process,

obtaining this basis function orthonormal basis function may not be very trivial task ok.

So, let us consider one special case of this random process and we will consider for that

matter to be Stationary White Noise.
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So, we will determinant the basis signals, for stationary white noise process ok. So, we

know that for a stationary white noise process let me assume the white noise process to

be N t I am considering noise. So, I am writing is N t and the autocorrelation for this,

because it is a white noise and the stationary what it implies is that. Since the noise is

white its power spectral density will be flagged. So, autocorrelation will be an impulse

ok.

So, for this spatial kernel the integral equation, this will reduce to the simple form as

follows correct. Now, using the property of an impulse this is easily shown to be equal to

N by 2 phi k t belonging to the interval a b correct. 

So, what this implies that any complete orthonormal set of basis signals, can be used to

represent the stationary white noise process correct. And additionally all the Eigen values

are identical and lambda k is equal to italic N by 2 a very important result ok. 

Now, let us consider this white noise process to be having 0 mean correct. So, if that is

the condition then, let us look at the expansion of this white noise process in terms of the

basis signals. So, as we have said we could use any complete orthonormal basis signal

set. 
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And I will be able to represent my noise process N t as N 1 phi 1 t plus N 2 phi 2 t plus

correct. So, this is summation of it is important to note that this N 1, N 2 are random

variables because this is a random process which consists of ensembles.  And we are

taking the projection of that onto this phi 1 2 phi 1 t phi 2 t and all that.

So,  depending  on  a  given  sample  function  from  this  random  process,  you  will  get

different  coefficients  of  expansions.  So,  what  it  means  basically  each  coefficient  of

expansion is going to be a random variable correct. So, it is important to note that when

you write this as a random process, then this is a random variable, but if I write it as a

sample function of this noise process, then this I should write it as n 1 phi 1 t plus n 2 phi

2 t and this will be the summations like this correct right. So, please note this difference

between a random process and the sample function of the random process. 

 (Refer Slide Time: 19:47)



So, now if we assume that our N t is a zero mean random process. Let us look at the

properties of this random variables N k which is nothing, but the projection of the noise

process  onto the  basis  signals  correct  right.  So,  we take the  average  of  this  random

variable, this will be equal to average of this quantity, I can change the order. Now, this

quantity is equal to 0 because, we assumed it to be 0 mean random process. So, it means

basically this is equal to 0 fine ok. 
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Now, let  us  look at  the covariance  of  two random variables  N k and N j.  So,  I  am

interested in finding out the covariance of N k and N j correct. So, we will write this as

this  is  by  definition  equal  to  this.  Now, we  are  assuming  0  mean  process  and also



stationary process correct. So, this will reduce to just this quantity, this will go to 0 and

this I can write it as follows.

So, this is the projection I will get N k N j I will get the projection of N t sorry, we will

use this phi j l dl correct. So, this I can write by changing the order as follows right. Now,

assuming that your noise is white, then I can substitute this by impulse. 
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So, this I can write it as it is a white stationary noise, this can be simplified as, this will

be equal to phi k and t equal to l only and this value will be existing. So, what this

implies is this will be equal to Italic N by 2, when k is equal to j is equal to 0, when k is

not equal to j by the property of the orthonormal set correct ok.

 (Refer Slide Time: 25:23)



So,  what  this  shows  is  basically  that  I  get  my  random  variables  N  k  N  j  to  be

uncorrelated correct. So, and the variance of each of this random variable turns out to be

Italic N by 2 correct. 

So,  now if  the this  noise  process  was a  Gaussian,  then my N k N j  would also be

Gaussian  random  variables,  in  that  case  when  Gaussian  random  variables  are

uncorrelated,  it  will  also  imply  that  they  are  independent  correct.  So,  for  a  white

stationary Gaussian noise it will imply independence of N k and N j random variables

ok. 

Now, having studied this we will see basically how to incorporate, this idea of vector

representation  of  a  noise  process,  into  a  design  of  an  optimum  receiver  for  M-ary

communication  in  additive  white  Gaussian  noise scenario.  And we will  continue  the

study in the next class.

Thank you. 


