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Hello,  welcome  back  in  the  previous  class  we  studied  that  absolute  entropy  for  a

continuous information source has the value which is infinite and therefore, practically it

is of little use and therefore, we defined another measure of this average information in

terms of what is known as differential or relative entropy of a continuous source. It is

important to note that this differential or relative entropy was defined with a reference

that was minus limit delta x tending to 0 of log to the base 2 delta x.

Now, we are concerned with communication  and in  communication  basically  we are

interested in transmission of information. Now we have seen in the discrete case that this

transmission of information which we termed as mutual information turned out to be

differences between the entropies that mutual information was defined as entropy of the

source minus the conditional entropy of the source given the observed output that is the

channel output.

So, we will see that in the continuous case also this transmission of information will be

called as mutual information, will be related to this differential or relative entropies and

now for this differential relative entropies if the reference is kept fixed is the same, then

the difference of the entropies will have significance to define the mutual information

correct.  So,  as  far  as  the  continuous  source  is  concerned;  our  measure  of  average

information  will  be  in  terms  of  differential  or  relative  entropy  correct;  which  is  as

follows.
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Where f x is the PDF of the random variable x and we also studied that to maximize this

differential  entropy  for  a  given  constraint  on  the  random variable  X in  the  form of

variance; that means, we specify that the variance of the random variable is a constant

equal to say sigma square, then we found out that PDF which satisfies this constraint and

which maximizes differential entropy h X.

And what we showed was that it  turned out to be a Gaussian or normal PDF sigma

squared  is  the  variance  which  has  been specified,  mu is  the  average  of  the  random

variable ok. So, this we had seen in the previous class. Now, what we will do is basically

assuming that this is my PDF, let us try to evaluate the entropy or differential entropy for

this PDF. My h X is equal to your log 2 1 by f x will be equal to we are assuming the

Gaussian PDF.
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So, this will be equal to this expression which I am writing here and this can be written

as this term comes because of the change of logarithmic to the base 2 to the natural log.

So, we can write my h X is equal to so, we integrate this term ok. So, we can add this;

this is equal to that will be the one term and the second term would be fine ok. So now,

sorry this is dx here ok. So, this basically because we know that PDF has to integrate

over minus infinity to plus infinity equal to 1.
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So, we can write this as the h X is equal to half to the base 2 2 pi sigma squared plus log

2 base to e by 2 sigma squared and please note that this term by definition is equal to

sigma squared.  So,  what  I  get  is  2  pi  e  sigma squared  ok.  So,  this  is  an  important

relationship; you can also write this as substituting the values of pi e n fine.

So, now for what it says basically that for Gaussian PDF this will be your differential

entropy and that is a maximum value which you can get fine. So, we can say that for any

finite variance or Gaussian random variable has the largest differential entropy attainable

by any other random variable correct that is important to note this for any finite variance.
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Let us try to evaluate for a practical signals this entropy and we will take a case of a

Gaussian  noise  correct  which  is  a  band limited  correct.  So,  what  I  am interested  is

basically in calculation of differential entropy for a band limited white Gaussian noise.
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Let us try to evaluate the differential entropy for this. So, my assumption is that I have a

noise correct, I denote it by N t; this is a random process and this noise is Gaussian

correct and it is also white; so because it is white it implies that if you take the Power

Spectral Density of it right; this is going to be is flat correct and we are also assuming

that this noise is band limited to say a bandwidth B hertz fine.
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So, the power spectral  density for this would look like this frequency and this is my

power spectral density correct and I assume that the spectral density is given by italic N

by 2 and the bandwidth is minus B to plus B hertz; so band limited to B hertz.

Now we know that power spectral density is the Fourier transform of the autocorrelation

of the random process and because this is a flat out here correct. So, the autocorrelation

will be the inverse Fourier transform of this power spectral density and that would be

equal to a sinc function correct and this sinc function will have the following property

that this autocorrelation will be 0 for all these values where k is equal to plus minus 1,

plus minus 2 and all that ok.

Now, so this  is  the property we will  get.  Now we know what is an autocorrelation?

Autocorrelation by definition is the expectation of N t and N t displaced k by 2 B correct

this correct; so by this means that this is equal to 0 correct. So, now we are assuming let

us assume that your noise process is also 0 mean without loss of generality.
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So, what it means that if this condition is satisfied it implies that your samples at the

distance given by k by 2 B are uncorrelated because the process is 0 mean process and

because it  is a Gaussian correct;  this also implies they are just independent  samples,

because it is Gaussian correct. Now from this expression for the autocorrelation, we can

also find out the variance; of that random process which you have to evaluate at k equal



to 0 and this  will  be equal to italic  N multiplied by B. Now so,  I  have my samples

Gaussian samples and they have this variance. 

Now from the earlier result which we derived we know the entropy for that sample is

going to be equal to half log to the base 2 2 pi e the variance is nothing, but this is equal

to this value ok and now remember that your noise process N t is completely specified by

the sampled values correct which are 2 B samples per second you sample and that is

because its band limited to B hertz. So, by a Nyquist criterion I can sample it at 2 B

samples  per  second.  So,  your  noise  process  is  completely  specified  by  this.  So,  the

entropy of this noise process is completely specified by this 2 B samples.

Now, each of these 2 B samples are independent correct from here. So, what it implies

that the entropy of those 2 B samples is going to be the sum of the entropies of those

samples  correct.  So,  you  will  get  the  entropy  of  those  2  B  samples  equal  to  2  B

multiplied by this quantity which is half log to the base 2 2 pi e N correct. So, so many

this  basically  remember it  is  a bits  correct.  So,  I  get basically  so many samples per

second. So, this becomes equal to B log to the base 2 2 pi e [noise] B bits per second

because I am taking 2 B samples per second fine.

So,  from  this  now  what  is  the  significant  conclusion  out  of  this?  The  significant

conclusion is that; that among all signal bind limited 2 B hertz and constrained to have a

certain mean square value say sigma squared, the white Gaussian band limited signal has

the largest entropy per second correct.



(Refer Slide Time: 18:16)

So, I can make this statement for a class of band limited signals constrained to a certain

mean square value the white Gaussian signal has the largest entropy per second or the

largest amount of uncertainty.

Now, what is the reason for this? Recall that for a given mean square value Gaussian

samples has the largest entropy ok. Now moreover all the 2 2 B samples of a Gaussian

band limited process are independent. So, this implies that the entropy per second is the

sum of the entropies of all the 2 B samples. Now in processes that are not white what

will happen that the Nyquist samples will become correlated and hence the entropy per

second is going to be less than the sum of the entropies of 2 B samples.

Now, now we relax one more condition; so if it is not white the entropy will be less and

now if  the  signal  is  not  Gaussian  then  the  samples  are  not  Gaussian  and hence  the

entropy per sample is also less than the maximum possible and entropy for a given mean

square value ok; is it ok? So, this basically based on this argument we can make this

statement that a band limited signal constrained to a certain mean square value, the white

Gaussian signal this will make the independent because uncorrelated Gaussian correct

has the largest entropy per second or the largest amount of uncertainty.

And this is also the reason why white Gaussian noise is the worst possible noise in terms

of interference with signal transmission and that is why we use this model very often in



communication  ok.  Now,  let  us  take  one  more  example  of  maximization  of  this

differential entropy, but with a different constraint correct.
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So, let me assume that I have a random variable X which is constrained to some peak

value; let us call that peak value to be M; what this means that the random variable can

take the value between minus M to plus M fine. And now our problem is basically I want

to maximize this differential entropy and I want to find out the PDF which will achieve

this.

So, my job is to find out the PDF f x such that this quantity will be maximized; now

please remember that the constraint of this random variable constrained to some peak

value M has been incorporated in this limits of the integral ok and we have one more

constraint on the PDF as usual and that would be this constraint this should be equal to 1

fine. So, let us try to evaluate the PDF for this.
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So, solution now again our F x f is same as earlier case which we had looked into; we

have  phi  1  x  f  is  equal  to  f  x.  Now  we  know  that  the  solution  to  this  constraint

optimization problem will be obtained by this theorem from calculus of variation this

should be equal to 0.

(Refer Slide Time: 23:30)

Now again in our case this will turn out to be 1 fine and we have to evaluate this equal to

0 implies; first I converted it to a natural logarithm from, divide everything by log to the

base 2 e and this you will get it as; where now lambda 1 is equal to alpha 1 by log to the



base 2 e this is another constants fine. So, from here basically you can see this will be

equal to now I get it my f x turns out to be e raised to lambda 1 minus 1 ok.
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So, and now so this is the thing let us solve for this and we have our constraint on the

PDF f x dx is equal to 1. So, if I substitute that dx is equal to 2 M e raised to lambda 1

minus 1 is equal to M this implies that e raise to lambda 1; quantity is equal to 1 by 2 M

correct. So, my PDF is going to be 1 by 2 M which is a uniform distribution between for

this range and is equal to 0 otherwise correct.

And for this let us evaluate the entropy differential entropy this is my PDF log to the

base 2 1 by f x. So, that will be 2 M and this will be equal to log to the base 2 2 M. So, I

get this result correct fine. So, if I change my constraint then this is the PDF which I get

for that constraint that is the constraint to the peak value M and then this is the entropy

which I will get that is a differential entropy fine.

So, now we have looked into the definition  of average information for a continuous

information source in terms of differential or relative entropy. Now our next concern is

basically  transmission  of  this  continuous  information  on  a  communication  channel

correct. So, we will take up this study in the next class.

Thank you.


