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A warm welcome to  this  lecture  on  the  subject  of  wavelets  and  multirate  digital  signal

processing. We build in this lecture a very important principle, in fact in some senses the

principle that lies at the heart of the subject of wavelets and time frequency methods, namely

the uncertainty principle. Therefore as you note today we shall devote the whole lecture to a

discussion of the uncertainty principle, laying the foundation of what uncertainty means 1st

and  then  proceeding  to  obtain  certain  numerical  bounds  on  confinement  in  2  domains

simultaneously. 

Let me 1st give an informal or a diffused, non-formal introduction to the idea of containment.

Well, we did a little bit of that yesterday in the previous lecture. But what I intend to do now

is to say a little more in terms of formality and then proceed to write down the mathematical

relationships or definitions. Recall that we said that there is of course a very tight or a very

strong kind of notion of confinement. that would ask that you have compact support in both

domains, time and frequency. 



the function must be nonzero strictly do over a finite interval of the real axis and must be

nonzero strictly over a finite interval of the real axis in the frequency domain as well. So both

in time and in frequency you demand that the function be nonzero only over a finite part of

the independent variable or the real axis. this is a very strong demand and of course yesterday

we mentioned that it cannot be met ever. 

And in fact I also hinted at the idea behind the proof. It related to the fact that if you noted

that the function was finitely supported, compactly supported on the real axis, there were

certain  properties  of  that  function,  specifically  the  existence  of  an  infinite  number  of

derivatives which made it impossible for that function to be compactly supported or nonzero

only on a finite interval of the independent variable in the natural domain. 

Natural domain can be in time, can be in space, whatever. Anyway, this was what we called

the strong version of containment. And we said that this of course was not possible but we

had asked whether a weaker notion of containment could be admitted. Namely, we do not

insist that the function be strictly nonzero over a finite interval but that most of its energy,

most of its content so to speak in some sense, be on a finite interval of the independent

variable. Which index is it? 

And simultaneously in the transform domain, in the frequency domain, we insist that most of

the content be in a finite interval of the frequency axis. this seems like a more reasonable

requirement and to a certain extent this requirement can be met. And as I said, to give a

diffused or non-formal presentation of how it can be met, I shall begin this whole discussion

by saying that we are finally going to come out with certain bounds on how much you can

contain in the 2 domains simultaneously. 

So there are several steps to reach this destination.  the 1st step is  to put down in a non-

diffused come in a formal way what you mean by containment, what do you mean by most of

the container being in a certain finite range? And we had also hinted at the approach that we

would take to do this, briefly, in the previous lecture. We have said that there are 2 ways of

looking at it. You could think of the magnitude squared of the function and the magnitude

squared of the Fourier transform as a one-dimensional object. 

And then you could talk about the centre of that object, centre of mass if you like. You could

talk about the spread of the object around the Centre of mass by using the notion of radius of

gyration. Or if you prefer to speak in a language of probability densities, then you could



employ the idea of a density built from the squared magnitude of the function and another

density built from the squared magnitude of the Fourier transform. You could then look at the

mean of these densities and the variance of these densities. 

And the variances are indicative of the spread. So this was a non-formal introduction, now we

need to formalise it. And that is what we shall do precisely to begin with, put down a formal

definition, a formal explanation of the idea of spread. Now of course we have to define the

domain in which we are going to work. We are going to work in L2R, we have agreed to that,

it is always going to be the space of square integrable functions. 

In fact I must mention that sometimes we are actually going to work in the intersection of the

space of square integrable functions and absolutely integrable functions. to be on the safe

side,  let  us put down that requirement  right now and let  us put down the tightest  of the

requirements, namely that the function belong to the intersection of these 2. 
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So the context, consider a function, let us say x of t which belongs to the intersection of L2R

and L1 R, which means it is both square integrable and absolutely integrable, I think we

should note that.  All  right.  Now because the function belongs to L2R, we assure that its

Fourier transform also belongs to L2R. So let us xt have the Fourier transform x cap capital

Omega. And we know that capital x, I mean x cap of capital Omega belongs to L2R as well. 

So we 1st define a density or a one-dimensional mass if you like to call it. We know that both

xt and x cap omega are square integrable and therefore if we take the magnitude squared of xt

and the magnitude squared of x cap omega, they would enclose a finite area under them. In

fact the 2 areas would be essentially the same but for a factor of 2 pie. Again if we chose to

do away with angular frequency and used hertz frequency, that 2 pie factor would also go

away. 
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Anyway, what we are saying is mod xt squared integrated from - to + infinity is finite. Let us

is  fact  use  the  standard  notation  for  this,  the  norm of  x  in  L2R the  whole  squared  and

therefore define a density Px given by mod xt squared divided by the norm again squared.

Now a few remarks, and in fact we should write them down one by one. Pxt as we have

defined it, namely mod xt squared by the norm in L2R of x the whole squared is a probability

density. 
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Why do we say this, well because of the following reasons, let  us list them one by one.

Number 1, P xt is greater than equal to 0 for all t, it is a density in t of course. So you may

think of t as a random variable and this is the density on that. The integral over all t of P xt is

easily seen to be 1 from the definition. Essentially the integral of P xt over all t would in the

numerator again have the L2 norm of the function x and of course the denominator is indeed

the L2 norm of the function x, of course both squared, the numerator and denominator and

therefore they would cancel out to give 1. 
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Similarly let us define a density in the Fourier domain, in the angular frequency domain. And

then we shall write Px cap as a function of omega to be mod x cap omega squared divided by

the norm of x cap square. Here again we are assured of the denominator being finite because

of the L2R business. So, again we shall for completeness and formalism note that this is a

probability  density. Px cap omega is  also a  probability  density. Indeed Px cap omega is

greater than equal to 0 for all omega, it is a density in omega. 

And the integral over all omega from - to + infinity of Px cap is 1. That is also easy to see by

the very definition. Now, we have taken the probability density perspective but we could as

well take the so-called one-dimensional mass perspective and let me also note that. 
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One could also take a one-dimensional mass perspective. That is, we could think of P xt as a

1-D mass in t and similarly you could think of Px cap omega as a one-dimensional mass in

omega. So what I am saying is, all of us or all the objects around us are masses in three-

dimensional  space.  So here in  you have a  simplified situation,  you have a  mass in  one-

dimensional space. That one-dimensional space can be the space of t or the space of capital

Omega. Similarly as I said Px cap omega is a one-dimensional mass. 


