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Today we shall begin with the lecture on the subject of wavelets and multirate digital signal

processing in which our objective would be to introduce the Haar multiresolution analysis

about  which  we  had  very  briefly  talked  in  the  previous  lecture.  Before  I  go  on  to  the

analytical and mathematical details  of the Haar multiresolution analysis or MRA, as it  is

called  for  short,  let  me once  again  review the  idea behind the  Haar  form of  analysis  of

functions.  

Recall that Haar was a mathematician or mathematician-scientist if you would like to call him

that. And the very radical idea that he gave was that one could think of continuous functions

in terms of discontinuous ones and do so to the limit of reaching any degree of continuity that

you  desire.  What  I  mean  is,  start  from a  very  discontinuous  function  and  then  make  it

smoother and smoother all the while adding discontinuous functions until you go arbitrarily

close to the continuous function that you are trying to approximate.  

This is the central idea in the Haar way of representing functions. We also briefly discussed

by this  was  something  important,  it  seemed like  something  silly  to  do  at  1st glance  but



actually is very important. And the reason why it is important, as we mentioned, was if you

think about digitally communicating, say for example an audio piece, you are doing exactly

that.  The  beautiful  smooth  audio  pattern  is  being  converted  into  a  highly  discontinuous

stream of bits.  

What I mean by discontinuous is when you transmit the stream of bits on a communication

channel, you are in fact introducing discontinuities every time a bit changes. So after every

bit interval, there is a change of waveform and therefore this continuity at some level, even if

not in the function, in its derivative or in its 2nd derivative, whatever be. Whatever it is, the

idea of representing continuous functions in  terms of discontinuous ones has its  place in

practical communication and therefore what Haar did was something very useful to us today.

What we are going to do today is to build up the idea of wavelets, in fact more specifically

what are called dyadic wavelets starting from the Haar wavelet. And to do that, let us 1 st

consider how we represent a picture on a screen and I am going to show that schematically in

the drawing here. 
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So you see let us assume that this is the picture boundary and I am trying to represent this

picture on the screen, whatever that picture might be. So just for the sake of drawing, let me

draw some kind of a pattern there, let us say you have a tree and some person standing there

and forgive my drawing, but whatever it is,  maybe some grass may be here. Now this is

inherently a continuous picture. How do I represent it in the computer? I divide this entire



area into very small  subareas, so I visualize this  being divided into tiny, what are called

picture elements or pixels.  

So each small area here is a pixel, a picture element so to speak. And there are for example,

suppose I make 512 divisions on the vertical and 512 divisions on the horizontal, I say that I

have a 512 cross 512 image, that many pixels and in each pixel region I represent the image

by a constant.  
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So the 1st thing to understand is there is a piecewise constant representation, let us write that

down, there is a piecewise constant representation of the image, one constant for each piece

and that piece is the pixel or the picture element. Now suppose I increase the resolution, so I

go from a resolution of 512, so I take the same, what I mean is, I take the same picture, same



picture. In this case I make a division 512 cross 512, in this case I make a division 1024 cross

1024.  

Now obviously the pixel area here, let us say the pixel area here is P2 and the pixel area here

is P1, it is very easy to see that P2 is one 4th of P1 and therefore I have reduced the area by

factor of 4. Naturally if I use a constant to represent the value or the, you know the intensity

of the picture on each pixel here and do the same here, what you see in this picture is going to

be closer to the original picture in some sense than what you see here.  
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So in other words we can capture this by saying, the smaller the pixel area, the larger the

resolution.  Now this is  the beginning of  the Haar  multiresolution analysis.  The more we

reduce the pixel area, the closer we are going to go to the original image. Even though this

captures the idea that we are trying to build, it is not quite the idea of the Haar MRA. The

Haar MRA does something deeper and that is what I am now going to explain mathematically

in some depth. Now here I gave the example of a two-dimensional situation which apparently

is more difficult than one-dimensional but it is easier for us to understand physical.  

We can more easily relate to the idea of a piecewise constant representation in the context of

images or pictures but the same thing could be true of audio for example.  So you could

visualize a situation though seemingly more unnatural where you record an audio piece by

dividing the time over which the audio is recorded into small segments. Now let me show

that pictorially, it would be easier to understand.  
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So  suppose  for  example  you  had  this  waveform  here,  the  one-dimensional  version.  So

suppose I have, this is the time axis and I have this waveform here, assuming that this is the

audio waveform, audio voltage recording, let us without any loss of generality assume that

this is the 0 point in time, so let Time be represented by t and let this be the 0 point in time.

Now let me assume that I divide this time axis into smaller intervals of size T here, this point

is T, this point is 2T and so on.    

I make a piecewise constant approximation, that means I represent the audio voltage in each

of these regions of size T by one number. Now what is the most obvious number or what are

the set of most obvious numbers that one can use to represent this waveform in each of these

time  intervals?  For  example,  in  this  time interval,  or  for  that  matter  in  any  of  the  time

intervals, it makes sense to take the area under the curve and divide by the time interval to get

the average of the waveform in that time interval and use that as a number to represent the

function.  

Here for example,  you can visualize that  the average will  lie  somewhere here,  I  am just

showing it  in  dotted,  so  average.  So  intuitively, it  makes  sense  to  represent  the  voltage

waveform in each of these intervals of size T by the average of that waveform in that interval,

is that right? Let us write that down mathematically. 
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So  what  we  are  saying,  if  you  have  a  function  x  of  time,  a  good  piecewise  constant

representation is the following. Over the interval of T, over the interval from say 0 to T, now

you  know strictly  it  is  the  open  interval  between  0  and  T, the  representation  would  be

integrate x of t dt from 0 to T and divide by T, the average. Now of course on any particular

integral of T, the same holds. So we say that on every interval of T, on any particular interval

of T, of size T, the average would be obtained by 1 by T integral over that interval of T, when

you write it like this, you mean that particular interval of T.   
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Integral of x t  with respect  to small  t.  This  is  a piecewise constant  representation of the

function on that interval of size T. Now the same thing could be done for an interval of size T

by 2. So over an interval of size T by 2, you would similarly have 1 by T by 2 integral over



that interval of length T by 2 x t dt. Now we are going closer to the idea of wavelets. Let us

pick a particular interval of size T, in fact again without any loss of generality let us choose

the interval from 0 to T and divide it into 2 sub intervals of size T by 2.   

So what I mean is take this interval of size T, 0 to T, I am expanding it, so you have this

function here over that interval, divide this into 2 sub intervals of size T by 2. 1 st take the

piecewise constant approximation on the entire interval of T and I show that by a dot and

dash line. You can visualize the average will be somewhere here. So this is the average on the

entire interval 0 to T. Now I take the sub intervals of size T by 2, so I have this sub interval of

size T by 2, I use a dash and cross to write down the average there, so I have dash and cross,

dash and cross here.  

You can visualize that in this sub interval, the average will be somewhere here. And similarly

in this sub interval, you could write down the average something like this. Now let us keep

this a main, let us call this average A on T, let us call this average A1 on T by 2 and let us call

this average A2 on the interval of size T by 2 and let us write down the expressions for each

of these averages. What are the expressions? 
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AT is obviously 1 by T integral x of t dt from 0 to T. A1 T by 2 is 1 by T by 2 integral from 0

to T by 2 x t dt. And similarly A2 T by 2 is 1 by T by 2 integral from T by 2 to T, x t dt. For

convenience, let me flash all the 3 expressions before you once again. AT is the average over

the  entire  interval  of  T, A1  T by 2,  the  average  over  the  1st interval  of  T Y2 with  this

expression and A2 T by 2, the average from T by 2 to T, the 2nd sub interval of size T by 2

with this expression.  

And just to get our ideas straight, here again is the picture. Now the key idea in the Haar

multiresolution analysis is to try and relate these 3 terms. So to relate AT, A1 T by 2, A2 T by

2 and it is in that relationship that the Haar wavelet is hidden. So what is the relationship?

Now the relationship is very simple, I mean all that we need to do is to notice that we have



divided the integral from 0 to T into 2 integrals over 0 to T by 2 and T by 2 to T and then

remember there is a slight difference in the constant associated.  
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So we have a constant of 1 by T in AT and a concept of 1 by T by 2 in A1 T by 2 and in A2 T

by 2 whereupon we have this very simple relationship between the 3 quantities. AT is half, I

leave it to you to verify, it is half of A1 T by 2 + A2 T by 2. And how do we interpret this, let

me try and, you know kind of focus just on this relationship, in other words, let us just focus

on these 3 constants and make a drawing there. So what we are saying is something like this,

I have this AT there, I have this A1 T by 2 here and I have this A2 T by 2 there.  

And we are saying this plus this by 2 gives you this, in other words this is as much higher

above AT as this is lower, what we are saying is these 2 heights are the same, that is what this



relationship implies. Now another way of saying it is, if I were to make a piecewise constant

approximation on intervals of size T, how would they look? So let me just sketch them.  
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So I take this function once again here, I have this function here, I have divide it into sizes of,

intervals of size T, let me show just 2 intervals for the moment. So this is how the function

would look when you would make a piecewise constant approximation on intervals of size T

and when you do it on intervals of size T by 2, it would look like this, something like this.

Now, this is a function, so let me highlight it, now let me darken it. This is in its own right a

function, piecewise constant function, the one which I have darkened here.  

And this is in its own right, the darkened part is in, is in its own right an approximation to the

original function here. Similarly let me now darken this and put some other mark on it, let us

keep the crosses, so I will darken this and I will put crosses on it, this is also another function.

So dark and cross function is another function, that is in its own right an approximation too.

So let us give them names.  
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Let us call this function, just the dark one as f1 t and let us call this function, the one which

we have shown with the dark and cross as f2 t, f2 t - f1 t is like additional information, what

we are saying is, instead of a piecewise constant approximation on interval of size T, when

we try and make a piecewise constant approximation on intervals of size T by 2, we are

bringing in something more. Go back to the original case of the picture, we have inherently

underlying a continuous two-dimensional picture, a continuous two-dimensional scene.  

When we make an approximation with a 512 cross 512 resolution, then we have actually

brought in one level of detail, when we go to 1024 cross 1024 representation, the level of

detail is 4 times more. What is the additional detail that we have got in going from 512 cross

512 to 1024 cross 1024? In effect when we take this difference f2 t - f1 t, we are answering

that question.   


