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A warm welcome  to  the  lecture  on  the  subject  of  wavelets  and  multirate  digital  signal

processing. to put the discussion of the current lecture in perspective, let us recapitulate what

we did in the previous lecture. In the previous lecture, we had looked at the equivalence

between functions and vectors in depths. In fact, in that equivalence we saw that by bringing

in the notions of the inner product between functions and of course the inner product between

sequences and then noticing that Parseval’s theorem is a version of a similar statement on the

inner product. 

We understood that  this  analogy  between  functions  and  vectors  leaves  us  much  to  gain

because it helps us picturize very well, it helps us visualize very well what we were talking

about when we talked about ladder of subspaces. In general, in functional analysis this is a

very serious analogy. So, it is not just a simile so to speak, it is a metaphor. We can actually

think of functions as generalised vectors and gain a lot from that kind of analogy rather that

kind of an equivalence or generalisation. 

And now we need to bring in another dimension to this discussion which we had briefly

begun in the previous lecture. the dimension of replacing work with functions with work with



sequences. Sequences are easier for us to deal with. In fact sequences can be dealt with using

a computer. You could store the samples of a sequence in memory, point after point. You

could process them in discrete time step-by-step and produce an output which is again a

sequence and lo and behold, if whatever you are doing with sequence maps exactly with what

you wish to do with the original continuous time functions, then this is an added advantage.

In fact this is true for the spaces V0 Containing V1 containing V 2 and V-1 containing V0 and

so on. As we saw briefly in the previous lecture but which we shall now go into greater

depths today. So, let us come back to the discussion. How could we think of a function in V0

has a sequence, has an equivalence sequence? Well, very simple,  essentially what we are

seeing is look at the coefficients in the expansion of that function with respect to the basis the

space V0. So, there you are. 
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We have the following standard basis for V0 given by Phi of t - N, N over all the integers and

let us sketch it typical Phi of t - N, it is 1 between N and N +1 and 0 elsewhere, 0 everywhere

else. this is how Phi of t - N looks. 
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Now in fact, this is also an orthonormal basis, I will introduce that word, orthonormal basis.

What we mean by that? If I take the dot product of 2 of them, Phi of t - N and Phi of t - M for

any 2 integers N and M, N and M belong to the set of integers. then this dot product is equal

to 0 if N is not equal to M and 1 if N is equal to M. Very easy to check, it does not require too

much of working to prove this and I leave it as an exercise for you to show. 

All that you need to do is to calculate the integral in the product after all, Phi of t - N and Phi

of t - M are in fact nonoverlapping when N is not equal to M. And if N is equal to M, they

overlap completely and then of course the integral is just the integral of a rectangle of unit

height over unit length, so it is one. Whatever it be, let us consider a function in V0 again to

fix our ideas of the connection between functions and sequences. So let us take this example

again, little bit of a repetition from the previous lecture but let us fix our ideas with it. So, we

have this function say X of t given by the following graphical representation.
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So, if I take the value, let us say half for some variety between -1 and 0, -3 by 4 in the region

from 0 to 1, 3 by 2 in the region 1 to 2 and let say 4 in the region 2 to 3. 
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 So, it is very easy to see that X of t can written as half Phi of t +1 + -3 by 4 times Phi of t +

3by 2 times Phi of t -1 + 4 Phi of t -2 and so on. So, you know you could continue this

beyond 3 and you can continue it before -1. And what we said in the previous lecture was that

equivalent to this continuous function is the sequence constructed by dot dot dot and then half

at -1, -3 by 4 at 0, 3 by 2 at 1, 4 at 2 and so on. 
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So, in other words, there is an equivalence between XT and the sequence. Now again, just to

recapitulate the notation for a sequence, we write the 0 point and mark the arrow 0 here to

show that this is the sample at N equal to 0. And then of course you have 3 by 2 at 1, 4 at 2

and half at -1 and so on. So, when we write the sequence in this notation, what we mean is

that this is the sample at 0, N equal to 0. And then the other samples are arranged in the right

order. So, for example, this is the sample at N equal to1, the sample at N equal to 2, sample at

N equal to -1 and so on in the correct order around the samples that we have marked. 

Now as an alternative, we could have as well written the same sequence in the following way.

this is just to introduce the notation properly. So, we could also have written…
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So, you could mark 1 for example, the sample at point number 1. And then the sample at

point number 2 is 4, the sample at 0 is -3 by 4, the sample at -1 is 1by2 and so on. So, it is the

same sequence written differently, just for some variety in notations. Sometimes we might

prefer to do something like this. Anyway coming to the point and stressing it once again,

there is  an equivalence,  there is  an equivalence  between function and the sequence.  this

function belongs to V0 and the sequence now belongs to what is called the set of square

integrable sequences. 
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So, let us call this sequence X of N, in that case, the square integrability of XT, in other

words,
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a fact that integral from – to + infinity mod XT square dt is finite means summation from N

going – to + infinity is also finite with the arguments as model XN square, this is also finite.

And therefore, we use a term for this, we say XT belong to L2R implies X of N belongs to

small L2 Z, so introduce this notation. this is a new term we have introduced, small L2 Z. So

small l2, so just as you have capital L to denote spaces with continuous arguments, you have

small l to denote spaces with discrete arguments. And again, we would like to define LP Z in

general. 
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So, in general, L PZ, this Z of course refers to set of integers. So, L PZ is a set of sequences,

in fact it is the linear space of sequences. Let the sequences be written as XN, such that,
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such as that summation M going from - to + infinity, mod XN to the power P is finite. So, in

particular, if you put P equal to 2, you get small l2 Z. 
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So, what we have just shown is that there is a correspondence. So, we have just shown a

correspondence. If X belongs to V0, which in turn is a subspace of L2R, of course here we

are talking about a continuous time function X of t, then we have the corresponding X of N

belonging to small L2 Z. 

Of  course  we  can  make  a  similar  inference  for  other  values  of  P  but  that  is  not  of

consequence at the moment, so we shall not go into it. What is important is when we talk

about inner products, now if you have an orthonormal basis, so here for example we have an

orthonormal basis. 
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You see, so X of, in fact here XN is the set of coefficients is the, is a sequence of coefficients

of  expansion  with  respect  to  an  orthonormal  basis.  Now, you know that  orthonormal  is

important here. If the basis is not orthonormal, what we are now going to say very soon is not

going to be true. So, the orthonormal basis is important here. 

If XN is a sequence of coefficients of expansion with respect to an orthonormal basis, of

course of XT I mean, then there is also a mapping between the inner products, that is what is

interesting. So, not only is there just an equivalence, there is also a mapping of the other

operations. 
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So if you have 2 such functions in V0, so, suppose you have XT and YT belonging to V0,

both of them belong to V0, which of course belong in turn to L2R. And that corresponds to

the sequences X square N and Y Square N, square meaning square bracket. 
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Then the dot product of XT with YT in continuous time, so inner product of XT and YT is

understood on the continuous time axis which is of course given by summation - to + infinity

integral XT Y bar t dt, is a multiple, is some constant times Summation N going from - to +

infinity XN YN bar. this is important. there is also a carry onward of the equivalence to the

domain  of  inner  products.  So,  whatever  we  are  doing  in  the  context  of  the  continuous

functions can be done, can be equivalently done or can be equivalently derived or brought

forward to the context of the sequences which are associated. 

So, we can go to the extent of forgetting about underlying continuous functions and deal with

the sequences directly. Now what is the physical or the practical meaning of this? Well, let us

go  back  to  the  1st lecture  where  we  motivated  the  very  idea  of  a  piecewise  constant

representation. And we started with a two-dimensional situation. We said let us take images

and we said let us divide those images into very small areas which we represent using picture

elements or pixels. On each of the pixels, we put down one number corresponding to the

average intensity of the picture in that pixel area. 

And we said that is reasonably representative of the image or the picture if those areas are

small.  Now, of  course  we  are  representing  the  original  image  by  a  piecewise  constant

function and equivalently we could now think of the image as being represented by a two-

dimensional sequence. So, sequence index with 2 integer variables, let us say N1 and N2. N1

going from 0 to 511 and N2 also going from 0 to 511, in case we have 512 cross512 picture

representation or resolution on the computer screen. Good. 



So,  what  we are saying now is  easy to  understand.  Whatever  we wanted to  do with the

picture,  we  can  equivalently  do  with  these  2  two-dimensional  sequences.  If  you have  2

pictures and if you want to mix-and-match and do whatever you want to do, you could do it

equivalent with these two-dimensional sequences. If you want to gain some inferences, you

could gain the same inferences by looking at these sequences. Good. But where does this take

us? 

Now what is going to be useful to us is to see how we can move from one resolution to the

next, that is what is of interest. You see, ultimately our movement in all this discussion is to

extract incremental information and incremental information is extracted by going from one

subspace of L2R to the next in the ladder. 
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So, let t the function belong to V1. Consider a function, let us say YT belonging to let V1.

Now V1 you will recapitulate is the space of functions piecewise constant on intervals of

length half. 

So, let us take one such, let us take a function from -1 to say 3. So, -1, - half, 0, half, 1, 3 by

2, 2, 5 by 2 and 3. So let, I will just write down, I will not sketch, I will just write down

values, the piecewise constant values in each of these intervals. So, in this interval the value

can be let us say 4. In this interval, the value is 7, in this interval, the value is 10, in this

interval, the value is 16, let us say in this interval, the value is 14, 11, let us say 3 and -1 for

some variety. these are the piecewise constant values in these respective intervals. 
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So, in fact we have the sequence here, the corresponding sequence, so I use the notation with

the standard marker of 0. So, at 0 I have 10, and then I have in order 16, 14, 11, 3, -1, 7 and 4,

this is my corresponding sequence. So, in fact what we are saying in effect is YT, if I call this

sequence Y of N, what we are saying in effect is YT is summation N over all the integers YN.

Note, Phi of 2 t - N, that is important. 
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Notice that Phi of 2 t - N is by definition going to be equal to 1 between 2T - N equal to 0,

that is t equal to N by 2 and 2 t - N is equal to 1. 



Which means t is N +1 by 2. So, for example, Phi 2t -1 is going to be 1 between 1 by 2 and 2

by 2, half and 1, and that agrees with what we have just wrote down. Good.  
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Now suppose that we decompose, we know that we have this decomposition of V1 into W1

and V0 or rather W0 and V0, I am sorry. So, we said that we have this space W0 given by the

span of Psi t - N. N over all the integers. And V0 of course is the span of Phi t - N for all

integers N. And now we are going to introduce the notion of what is called an orthogonal

complement. 
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So, we are going to say, well V1 is the orthogonal sum, this represents orthogonal sum and

we are going to explain this in more detail. We say that the space V1 is the orthogonal sum of

the spaces V0 and W0, if there is a unique way to take a vector in V1 and decompose it as a

sum  of  vector  V0  and  a  vector  in  W0  with  the  vectors  from  the  0  and  W0  being

perpendicular, being orthogonal, in other words, their inner products being 0. 

So, what is this idea of an orthogonal sum, the idea of an orthogonal sum is to decompose a

linear  space into  subspaces  of  course of  smaller  dimensions  where  we also have mutual

perpendicularity or mutual orthogonality between the space, between the vectors in these 2

spaces of the composition. Now, I shall give you a simple example from a three-dimensional

situation. Let us take the three-dimensional space of the room that we are in at the moment

and let us take the two-dimensional space of the floor. 

The three-dimensional space of the room is the orthogonal sum of the two-dimensional space

of the floor and a one-dimensional space comprised of all multiples of a vector perpendicular

to  the  floor. So,  as  expected,  a  three-dimensional  space  is  an  orthogonal  sum of  a  two-

dimensional space and a one-dimensional space. The one-dimensional space is formed by all

multiples of a vector perpendicular to the floor. The two-dimensional space is formed by all

vectors lying on the floor. 

So if you take any vector lying on the floor and any vector in that one-dimensional space of

multiples  of  a  unit  vector  perpendicular  to  the  floor,  these  2  vectors  are  orthogonal,

perpendicular. In 3 dimensions, it is very easy to visualize. Now you can always generalise to

N dimensions, so for example, if you have a 10 dimensional space, it could be an orthogonal

sum of 4 dimensional space and another 6 dimensional space where if you take a vector from

that 4 dimensional space and a vector from the 6 dimensional space, they are perpendicular to

one another. 

Perpendicular as understood by taking the inner product between these 2 vectors in that 10

dimensional space. Now, I must at this point make a little remark, the inner product allows us

to bring in the notion of an angle between functions. A more general version of orthogonality,

so we say 2 vectors are perpendicular if their inner product is 0, in general we can also define

the angle between 2 vectors using the inner product and we shall do exactly that in a minute. 


