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Parseval’s Theorem.
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So with that little prelude let us come back to this uncountably infinite dimensional space of

functions on the real line, in which case we can generalise. So we can generalise the notion of

a dot product or inner product between 2 functions. Essentially, if I take 2 functions X and Y,

both on the variable  T, the dot  product  is  not  going to  be a summation anymore but  an



integral.  So  XT  Y  bar  T  DT.  Taking  that  idea  further  of  multiplying  corresponding

coordinates and instead of summing, you now integrate. 

So the integral replaces the operation of summation here. Now of course it is easy to verify

and I leave that as an exercise to you, the properties of linearity and commutativity and so on.

So I leave it to you as an exercise here, verify the properties of conjugate commutativity, in

other words if I change the order of the arguments, there is a complex conjugation involved.

2nd of linearity in the 1st argument, so if I take a linear combination of 2 vectors or 2 functions

in  the  1st argument,  then  the  corresponding  inner  products  are  also  similarly  linearly

combined and 3rd positive definiteness. So I leave this to you as an exercise. 

But what I wish to emphasise at this point is the famed Parseval’s theorem of which we are

aware in the context of the Fourier transform. So let  me recapitulate that very important

theorem in the context of Fourier transform and let us also give an interpretation to it. 
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You see that Parseval’s theorem as we know it, for continuous function says that if XT has the

Fourier transform, now I am going to use the frequency, Hertz frequency variable. So, this is

the Hertz frequency variable, nu. In other words, what I mean by that is that the Fourier

transform of XT is essentially integral XT e raised to the power J2 pie nu t dt, integrated over

all time T. So, this is the Hertz frequency variable in Hertz.
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Recall that you can also have an angular frequency variable, so for example, you could write

X cap of omega, I use this capital mega when we are talking about continuous time, we are

going to follow some notions of different notations for continuous time and discrete time. So,

we use this  as the angular frequency variable for continuous time. In which case, X cap

omega is X of T e raised to the power - J omega T dt. And there is a simple relation between

omega and nu, omega is  2 pie  nu,  Angular frequency and Hertz  frequency. Well,  simple

things, but we should put down all our cards in the beginning, so we do not get confused

later.
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Now again this is a little bit of abuse of notations because I am using X cap of capital omega

here and 
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I am using X cap of nu there. And depending on the context, I must interpret either Hertz

frequency in the argument or angular frequency in the radians per second in the argument.

Normally from the context, it shall be clear. And if there is some confusion likely, we will

make it clear by expressive statements. But remember that from the context, we should be

clear whether we are dealing with Hertz frequency or angular frequency, radians per second.

Anyway, with these details, let us come back to the Parseval’s theorem. 
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What does the Parseval’s theorem say? The Parseval’s theorem says the following, if you

have the Fourier transforms of X and Y, so if XT has the Fourier transform, let us use the

Hertz frequency variable X cap nu and YT has the Fourier transform Y cap nu. This arrow

denotes the Fourier transform. Then there is an equivalence of the Fourier transform inner

product and the time inner product, that is what the Parseval’s theorem says in our language

now. 
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So, the inner product in time, so to speak is equal to the inner product in frequency. 
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In other words, if you take X cap and Y cap and construct their inner product in the same

way, treating the frequency as the independent variable or the argument. Now, this is a very

beautiful and a very powerful interpretation of Parseval’s theorem. When we talk about the

inner product perspective, we have a very different way of looking at possible theorem. And

in fact, if we really think of it a little more deeply, Parseval’s theorem becomes so much more

intuitive when we talk in terms of inner products. And let me take a minute now to show you

why it is so intuitive. 
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Indeed, what Parseval’s theorem says in the language of inner product is this and let us do the

same in two dimensions, then it will be absolutely clear. So, I have 2 vectors, let us call them

X and Y. Now what Parseval’s theorem says is X dot Y is independent of the coordinate

system, simple enough. What coordinate system we choose to represent X and Y does not

affect the inner product, that is what Parseval’s theorem says in a way. And to strengthen, you

see,  it  may not be obvious to you why Parseval’s theorem relates to this  statement.  It  is

obvious  for  two-dimensional  vectors  that  the  inner  product  is  or  the  dot  product  is

independent of the coordinate system. 

What is not obvious is why is this related to the Parseval’s theorem. Well, towards that, we

need to go back to what X cap nu really is, in a way. And that will become clear if we write

down the inverse Fourier transform. 
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So, we can write down XT incomes of the inverse Fourier transform as X cap nu e raised to

the power J nu t dnu, nu is the Hertz frequency variable again. So, in a way what we are

seeing is, we are reconstructing XT from its components. 

Each of the X cap nu 4 different values of nu is a component here. And this is the way we

have  reconstructed  XT from  its  components  and  in  reconstruction,  we  have  used  these

vectors. Each of these e raised to the power J nu t is like a vector, is a function of the real

axis. The only catch is e raised to the power J nu t is not an L2R function. So, we have to

deviate little bit there from our discussion. But if we choose to ignore that fact, we have

essentially taken these coordinates, multiplied them by the corresponding so-called functions

along each of the coordinates nu and added them to get the function XT. 

So, each of the X cap nu is like a different expression of the same vector X in a different

coordinate system. So, what we are saying in Parseval’s theorem is that the dot product is

independent of the coordinate system. Whether we choose to use the standard coordinate

system of time to represent the function or the slightly less obvious coordinate system of

frequency to represent the same function, the dot product remains the same. 

So,  these  and  some  other  such  interpretations  are  what  are  offered  when  we  represent

functions in terms of vectors or when we think of functions as generalisations of the ideas of

vectors. And now for the last remark in this lecture which we shall build on even greater in-

depth  in  the  next,  namely,  what  is  the  connection  between  functions  and  sequences,

continuous functions and sequences? Just to initiate the discussion here, without completing



it  or  rather  taking  it  further,  we  shall  do  it  in  the  next  lecture,  but  just  to  initiate  the

discussion. Let us go back to the idea of piecewise constant approximation. 
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So, suppose we have this piecewise constant approximation of this function on intervals of

length  1.  So,  I  take  the  standard  unit  intervals.  And  I  make  a  piecewise  constant

representation of a function. So, I have this. So, let the values be let us say C -1 here, C0

there, C1 there and so on so forth. 
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Now it is very easy to see that if I take the basic function Phi T described this way, 1 between

0 and 1 and 0 elsewhere, then this piecewise constant representation can be written as C -1

among other terms, Phi t +1+ C0 Phi T + C1 Phi T -1 and what have you, afterwards.  

So, to conclude just this introduction of this correspondence, we can note that equivalent to

this piecewise constant representation that I had here, 
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this function in V0 that we talked about last time, equivalent to that function is a set of values

C -1, C0, C1 and so on. So, the sequence CN, N over all the integers is equivalent to that

piecewise constant function in V0. Any of them can be constructed from the other, from that

piecewise  constant  function,  we  can  construct  the  sequence,  from the  sequence  we  can

construct the piecewise constant function given Phi T. Now this equivalence is what we shall

take further and delve into deeper in the next lecture. And in the next lecture, which shall also

build further these ideas of vectors, functions and sequences. Thank you. 


