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Op-amp nonidealities (continued) 

 

Welcome back to Basic Electronics. In this lecture, we will continue with the input 

bias current of an op-amp and look at its effect on inverting and non-inverting 

amplifiers and also on the indicator. Next, we will start with a new topic namely op-

amp filters. To begin with, we will see what is meant by a filter; what are the various 

types of filters and how to represent a filter with a transfer function. Let us begin. 
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Let us consider the effect of bias currents on the inverting amplifier now. So, we 

replace the op-amp with the real op-amp model, which includes the bias currents. 

And, now let us see what V o should be in this case. We will assume that the op-amp 

is ideal in other respects; that means, we will say that the offset voltage is 0 volts. We 

have already considered the effect of the offset voltage on the inverting amplifier. 

And, we will not repeat that here.  

So to begin with, since this is the ideal op-amp, V plus and V minus are the same. V 

plus is 0. And therefore, V minus is also 0. And, if V minus is zero, this current R 1 is 



V i minus 0 divided by R 1; that is, V i by R 1. Now, i 2 is not equal to i 1 in this case 

because we have i B minus going there. 

This current is still zero because that is an input current for this ideal op-amp. So, 

therefore i 2 is i 1 minus i B minus; that equation. And, now we can write in the 

equation for V o; V o is V minus, which is 0, minus i 2 times R 2. And, we already 

know i 2. It is i 1 minus i B minus. i 1 is V i by R 1. So, we put it all together. And 

then, we get minus R 2 by R 1 times V R plus i B minus times R 2. The first term, 

minus R 2 by R 1 times V i is simply the output voltage we expect from the inverting 

amplifier. And, the second term arises because of the bias currents. 

Now, i B minus is a constant, R 2 is a constant. So, therefore this term represents a 

DC shift in the output voltage. Let us see how large it is. Take an example i B minus 

equal to 80 nano amperes, R 2 equal to 10 k. So, i B minus times R 2 is 80 times 10; 

800 nano times kilo; that is micro. So, we have 800 micro volts, the same as 0.8 

millivolts. So, that is the DC shift we will expect in the output voltage, in this 

example. 
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Let us now look at the effect of bias currents on a non-inverting amplifier. To begin 

with, we replace the op-amp with this model which includes the bias currents. And, 

we will assume that the op-amp is ideal in other respects, including V o s equal to 0. 



Now, since this op-amp is ideal; V minus and V plus are equal. V plus is equal to V i, 

the input voltage. Therefore, V minus is also equal to V i. And the current i 1, 

therefore is 0 minus V i divided by R 1, that is, minus V i by R 1. This current i 2 is i 

1 minus i B minus because this current is 0. That is an input current for the ideal op-

amp. And therefore, we get i 2 equal to minus V i by R 1 minus i B minus. And, now 

we can write V o as V minus minus this voltage drop, which is i 2 times R 2. 

Substitute for i 2 from there. And, we finally arrive at V i times 1 plus R 2 by R 1 plus 

i B minus times R 2. Now, this part is the output voltage we expect from a non-

inverting amplifier. And, this is the effect of the bias currents. 
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Now i B minus is a constant, R 2 is a constant. So, therefore this term is simply a 

constant or DC shift in the output voltage. Next, let us look at the integrator and see 

how it is affected by the bias currents. First, we replace the op-amp with this model 

which includes the bias currents. 

Let us look at the output voltage with the condition that V i is 0. So, this is 0 volts. 

Now, this is an ideal op-amp with V plus equal to 0. So, therefore V minus is also 

equal to 0. Now, this register has got this node at 0, this node also at 0. So, therefore i 

1 would be 0 and i 2 then would be equal to minus i B minus. 

In other words, a constant current will now flow through the capacitor and that will 

drive the op-amp into saturation. That is the situation we definitely do not want. What 



is the remedy for this situation? The same as what we saw for the offset voltage 

problem. And that is to connect a register R prime across the capacitor, and that 

provides a DC path. So, the current would now flow like that. And, the output voltage 

will now be V minus, which is 0 plus this voltage drop; which is, i B minus times R 

prime. So, our V o will now have a shift equal to i B minus times R prime and the op-

amp will not go into saturation. As we have discussed earlier, R prime should be 

small enough to have a negligible effect on V o; that means, we want this delta V o to 

be small. 

At the same time, R prime must be large enough to ensure that the circuit will still 

function as an integrator. And, we have commented on this point when we were 

discussing offset voltage and its effect on the integrator. 
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Let us now see how the inverting amplifier circuit can be modified to reduce the 

effect of the bias currents. And if you recall; what is the effect of bias currents on the 

inverting amplifier, it was to cause a shift, a DC shift, in the output voltage. So, the 

modification we consider is adding a resistance R 3 here, between the non-inverting 

input and ground.  

And, let us see how that affects the output voltage. So, first we replace the op-amp 

with this model, which includes the bias currents. And, now let us analyze this circuit. 

And, notice that since we are interested only in the effect of bias currents on the 



output voltage, we have deactivated V i; that means, we have connected this node to 

ground here. 

So, we will analyze this circuit with that condition. Let us start with V plus. This 

current is zero because has the input current for the ideal op-amp. So, therefore, this i 

B plus would go like that and the voltage at this node, therefore is minus i B plus 

times R 3. And, since this op-amp is ideal, V minus and V plus are the same. 

Therefore, V minus is also equal to minus i B plus times R 3. And, now we can get 

this current; V minus divided by R 1. So, i 1 turns out to be minus i B plus times R 3 

divided by R 1. What about i 2? i 2 is i 1 plus i B minus. And, now we can write an 

expression for V o. V o is V minus plus this voltage drop. So, that is what we have 

here; V minus plus i 2 R 2. We already know V minus from there; i 2 is i 1, which is 

this quantity plus i B minus. 

So, all that can be written as this expression here; minus 1 plus R 2 by R 1 times i B 

plus times R 3 plus i B minus times R 2. Let us now rewrite this expression for V o, in 

terms of i b; which is, i B plus i B minus by 2. We have seen this definition earlier. 

That is the average of these two currents. And, i o is which is the offset bias current, 

which is the difference between i B plus and i B minus. And from these equations, we 

obtain i B plus as i B plus i o s by 2 and i B minus as i B minus i o s by 2. Now, we 

can substitute these expressions here. And then, we get all of that which can be 

rewritten in this form. Now, in this equation we have this 1 plus R 2 by R 1 outside 

the curly brackets. And within the brackets, we have two terms; one involving i B and 

the other involving i o s by 2. 

And, now what we can do is to take advantage of this minus sign here. Choose R 3 to 

be equal to R 1 parallel R 2, in which case this entire first term will vanish. And that 

will surely lead to a much smaller output voltage. Let us see what that is. So, with that 

substitution R 3 equal to R 1 parallel R 2, over here, as well as over here, we can 

simplify this V o further. And that turns out to be minus R 2 times i o s. And if you 

recall, i o s is the offset current and that is much smaller than i b. And therefore, this 

voltage is a smaller DC shift as compared to R 2 times i B minus, which we obtained 

when R 3 was 0 or R 3 was not connected. We had connected directly the non-

inverting input to the ground. 
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So, this is one trick that you will often see implemented in op-amp circuits, especially 

when the DC shift of the output is concerned. So, we have looked at the effect of the 

offset voltage and also the bias currents on several circuits; inverting amplifier, non-

inverting amplifier and the integrator. And, the question that arises is, is it really a 

matter of concern; should not worry about it at all.  

Let us look at that question. For the integrator, we have seen that V o s and i B will 

lead to saturation. And that, of course is disastrous and that has to be corrected. And, 

how did we correct that? We provided a DC path, a register in parallel with the 

capacitor and that solved this problem. So that only gives us a DC shift, and did not 

cause the op-amp to go into saturation. 

And what about the inverting and non-inverting amplifiers: it depends on the 

application. Let us see in what way in AC applications, where the signals are varying 

with time. For example, audio signals. The DC shift arising due to the offset voltage 

or the bias current is really of no consequence because in such circuits, there will be 

coupling capacitors to couple the various stages. And, these coupling capacitors will 

just block that DC shift delta V o, so that DC shift really will not have any effect on 

the output. So, in these situations we really do not need to worry about the effect of 

the offset voltage or the bias currents. 



A DC shift is a matter of concern when the output is expected to be DC or slowly 

varying. For example, consider a temperatures sensor. So, we have something like a 

bridge circuit to sense the temperature that gets amplified, maybe in one or two 

stages. And finally, displayed or supplied to some control circuitry. Now, in these 

situations a DC shift is definitely a matter of concern, which arises because of V o s 

and i B because that is going to lead to a wrong temperature value being interpreted. 

So, in these situations definitely we must worry about the offset voltage as well as the 

bias currents. And, we should try to minimize the effect, either by choosing an op-

amp which has much better values of these parameters or by using some circuit tricks. 
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Let us now talk about filters, a very important class of electronic circuits. And, they 

find applications in many different areas. What we will do is first look at what a filter 

does, what its functionality is and then we will see how it can be implemented. So, let 

us take this simple example, where we have V of t as a sum of two components V 1 

and V 2. Each of them is a sinusoid. V 1 is V m 1 sin omega 1 t; V 2 is V m 2 sin 

omega 2 t. This is our V 1, it has a lower frequency and this is our V 2. So, V of t, 

which is the sum of these two wave forms, looks like this. 

And, now what we want to do is to pass this resulting wave form through a filter and 

see what we get at the output of the filter. Now, let us look at the action of a low-pass 



filter on this wave form. And before we do that, let us look at the transfer function of 

a low-pass filter; that means the ratio of the output to the input of the low-pass filter. 
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And that is given by this graph here. This is the transfer function of the low-pass 

filter. This axis is the angular frequency in radiance per second. If omega is less than 

this cutoff frequency omega c, then the transfer function is 1; that means, the low-pass 

filter passes all frequencies up to this frequency. If omega is greater than omega c, 

then the transfer function is 0; that means, the low-pass filter rejects or blocks 

frequencies higher than omega c.  

Now, our input voltage; each composed of two frequencies; this low frequency and 

this high frequency. And, if we choose the cutoff frequency of the low-pass filter to 

be somewhere in between these two frequencies, then what will happen is this high 

frequency component will get rejected and only the low frequency component will get 

passed. And therefore, at the output we will have V o equal to V 1. That is the low 

frequency component. 

For a high-pass filter, the situation is exactly the opposite. For omega greater than 

omega c, the transfer function is 1. And therefore, these frequencies will get passed; 

for omega less than omega c, the transfer function is 0. And therefore, these low 

frequencies will get rejected. So, let us see what happens when this same input 

voltage is now applied to a high-pass filter. And, let us say that we choose the cut off 



frequency of the high-pass filter to be between these two frequencies. Then, what 

happens is the high frequency gets passed and the low frequency gets rejected. And 

therefore, at the output of the high-pass filter we have V o equal to V 2. That is, the 

high frequency component. 
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Now, there are some other types of filters as well. And, we will be looking at these 

very soon. Let us now look at how a low-pass filter is represented. In particular, we 

will look at ideal low-pass filter first. The transfer function of an ideal low-pass filter 

looks like this; H of j omega is 1, up to omega c. And, beyond that it is 0. And, the 

output of the filter is given by in the frequency domain H of j omega times V i of j 

omega. Here is an example. Let us say our input voltage has various frequency 

components or Fourier components; one, two, three, four components. And, these 

components will have different values or amplitudes. Now, if we pass this through a 

low-pass filter with cutoff frequency omega c located here, then it will pass these two 

components. But, block these two because these two will get multiplied by 0, these 

two will get multiplied by 1. 

So, our resulting output in the frequency domain will look like this, where the high 

frequency components have been eliminated. So, all components with omega less 

than omega c appear at the output without attenuation. And, all components with 

omega greater than omega c get eliminated. And, how do we express mathematically 



this H of j omega for this ideal low-pass filter? It is simply 1 for frequencies up to 

omega c, and that 1 is the real number 1. So, we can write that as 1 plus j 0. And, ideal 

high-pass filter does just the opposite. So, it is H of j omega is 1 for all frequencies 

higher than omega c. And, it is zero for all frequencies, which are lower than omega c. 

So, it passes high frequencies. That is why it is called high-pass and blocks low 

frequencies.  

Here is a filter called the band-pass filter. So, it passes a band of frequencies between 

omega l and omega h. So, between these two frequencies its value is 1. And, 

otherwise it is 0. Here is a band reject filter. In other words, it rejects all frequencies 

which are in a specific band given by omega l and omega h. So, its transfer function is 

0 in this band. And it is 1, otherwise; now that all of these are ideal filters. In real life, 

we would not be able to implement filters with exactly these transfer functions. So, 

we can approximate these transfer functions with certain mathematical expressions 

and then realize those with circuits. 
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Let us now look at the effect of ideal filters on a sample wave form. The wave form 

that we consider is this; V of t. It has three frequency components; V 1, V 2 and V 3. 

V 1 has a frequency of 0.1 kilo hertz and an amplitude of 1, V 2 has a frequency of 

0.5 kilo hertz and an amplitude of 0.2 and V 3 has a frequency of 2 kilo hertz and an 

amplitude of 0.1. So, we are passing V of t through our low-pass filter, to start with, 



which has a transfer function given by this plot here. And, the cut off frequency of 

that filter is 0.4 kilo hertz. So, all frequencies up to 0.4 kilohertz will get passed and 

all higher frequencies will get blocked. So, what happens? This component gets 

multiplied by 1, these get multiplied by 0. And therefore, only this one survives. And, 

there therefore you see V 1 of t at the output of the filter as shown here. 

If we pass the same V of t through a high-pass filter now with this transfer function 

here, then only the high frequency component survives. These two get eliminated. 

And then, at the output we have the voltage corresponding to this component; that is, 

V 3 as shown here. 

What about a band-pass filter? Here is an example. So, the transfer function is 1, here 

between these two frequencies. And, it is 0, otherwise. Now, only this component 

which lies in this band will go through. And, these two will get eliminated. And 

therefore, we have the green one; that is, V 2 of t as shown here. Similarly, if we pass 

V of t through a band reject filter which has a transfer function shown here, then this 

component gets eliminated. This low frequency component and this high frequency 

component go through. And, what we get at the output is the combination of this V 1 

and V 3. And that looks like this.  

To summarize, we have completed our discussion on input bias currents of an op-amp 

and started a new topic namely; op-amp filters. We have looked at how a filter can be 

represented with the transfer function H of j omega. In the next class, we will look at 

the use of (Refer Time: 27:31) to show how a given transfer function varies with 

frequency. That is all for now. See you next time. 


