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Mimetic (Finite Difference Method) 

We have come to one of the last modules of our 12 weeks long journey in this computational 

electromagnetic course. The part where we are discussing some of the advance methods like 

finite volume algebraic topological method and the method that we are going to focus today 

is called as the mimetic method. And it’s one of the last methods that we are going to discuss 

in this course. So the method is called as mimetic method because of its mimicking character 

so what it mimics is something we will look into it . So let's look into the today’s course 

content. 
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So today’s discussion is going to be about mimetic finite difference method. 
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And the overview of today’s lecture is going to be the introduction to Mimetic method its 

theoretical framework the Maxwell equations in the framework of mimetic method and we 

are going to summarise.  As I said this method is quite advanced is not in general period in 

depth in computational electromagnetic course for various reasons. One of the reasons could 

be is the formulation itself is quite complex. Their terms and their Technologies are quite 

different so people don’t really use it in teaching computational electromagnetics. But I have 

promised that I wanted to teach advanced methods as a part of this Course work. So I am 

going to introduce this method so I am not going to be as vigorous as I was in other methods 

like finite volume finite element and algebraic topological method . We are going to give 

general overview and also look at the formulation from a very high level and see how we can 

model Maxwell equation in the mimetic frame work .  
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So let's look at the introduction.  

(Refer Slide Time: 02: 03) 

 

We looked at standard finite difference method as one of the first method that we taught in 

this course. Where We saw the ease grid where we  have staggered Cartesian grid  where the 

e field and h field are separated by space and time and we saw how the structured grid helps 

in modelling Maxwell equation . But we also said is going to have a lot of other problems 

like this stair casing  error and so on and so forth.  

So we discussed about this problem earlier because when you know to capture very very fine 

details it is going to be prohibitively smaller refinement that one needs when you are working 

with standard finite difference method because we cannot really go and model such refined 

areas with standard spatial discreditisation so we have to really refine it to small dx and dy if  

you are in a 2D and DX DY and DZ if you are in 3D. So that being said there is quite a lot of 



motivation to really look at finite difference method because it is a elegant  simple 

formulation. But can we use finite difference method for non Cartesian grid? So that means 

we are still  in a orthogonal grid or any kind of cubical grid but can we go for non Cartesian 

and non orthogonal grid? So that’s the main motivation. 
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 So the idea of limiting finite difference method is that it actually mimics  the continuous 

differential operator and not only that it allows the discrete approximation of PDE if possible 

and it preserves the conservation laws and symmetry  in the   solution.  So we discussed 

about conservation laws when we started with finite volume method. It conserves  the energy 

and it also preserves  the symmetry of the solution and Maxwell equation is a conservation 

law so one has to find mathematical models that can preserve the symmettries in the solution. 

So that being said there is a lot of motivation to go for mimetic  methods and one has to really 

formulate the mimetic method  in such a way that it can really  capture the aspects of the 

Maxwell equation in principle and at the same time it can have the simplicity of finite 

difference method. So that is going to be the aspect that we are going to look into. So let’s us 

now go  into the theoretical framework.  
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So the theory of finite difference method is something that we know from our first lecture 

module .  

(Refer Slide Time: 04: 52) 

 

So we are going to use the same theory but we’re going to model it on non orthogonal grid. 

so the discrete scalar functions what we mean by discrete scalar functions are the functions 

which are having only scalar values and they are defined on the nodes and we’re going to call 

those space as HN. So for now assume that HN is going to be the space where all the scalar 

quantities are going to be located so those are going to be the nodal values here. And here we 

say if x y z are the Global Axis locally inside the grid it can be x dash y dash and  z dash and 

as you  can see X Y and Z are not orthogonal so we can still consider them in the same 

manner we consider an orthogonal grid where we can call  i j k and the next note in the x 

dash or x  Prime direction is called as Ii plus   j k and the one above will will be called as I 



comma J comma K plus  1 and the exact diagonal node from this node will be called as I plus  

1 the one above will  be called as i j K plus 1 .  And the exact diagonal node from this node 

will be called as i plus 1 j plus 1 k plus 1 similar to what we have done in the finite difference 

method.  
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They the discrete vector functions. 
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So initially we talked about discrete scalar function  
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In the same and we can talk about discrete vector function and these discrete vector functions 

are going to be analog of the continuous vector functions and they have free scalar 

components . Similar to the discrete scalar function we are going to talk about discrete vector 

functions and they are going to be analog of the continuous vector function with three scalar 

components . And These scalar components are Ax    Ay  and  Az and we call this discrete 

vector function as A and we are going to define this A on this face which is J N  but the Math 

cal symbol is used. So as you can see the match cal HN is going to be the combination of 

scalar HN so I am going to call this  as vector function  and this is as a scalar HN.  So the 

vector HN is going to the space where the discrete vector functions are located. The discrete 

scalar functions are going to be in the HN. 
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 The next symbol and aspect here is the material properties as you have seen before the 

Epsilon and Mu are the permittivity and permeability that we have been using and these are 

the scalar functions that are going to be defined at the Cell Centre. 
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So when I say cell centre these  cells could be non orthogonal grid and permittivity and 

permeability values are placed at the centre of this particular cell.  If you are in a 2D you are 

talking about centre of the surface if you are in 1 D you are talking about centre of the edge. 

So the material properties are going to be defined at the cell centres and they are going to be 

the scalar functions and there are going to be 3 spaces that we are going to define and they 

are going to be associated with the spaces and they are termed as HS x prime H S Y prime 

and HS Z prime. There are going to be 3 spaces that we are going to assign to the edges  so 

they are called as H L X prime  H L Y Prime and HL Z prime . As you can see H stands for 

faces and L stands for line or edges .   
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So the vector functions are generally defined on notes or edges or phases. So they  are there 

going to be defined in the space vector HN vector HL and vector HS etc . And this is the 2D 

counterpart and this is the 3D counterpart. And now when we look at the 3 D counterpart we 

can define the normal directions accordingly. So  the normal directions are going to be the 

aspects that we are interested in. Similarly in the 2D space we are also having normal to the 

HS. So this  is clear because we saw here so the attrib field are going to be defined on the 

edges 2D is going to be like this. 

(Refer Slide Time: 09: 32) 

 

And the discrete analog of Curl E is going to act on that particular discrete electric field  Not 

only that they are going to be the orthogonal projections of E on to the direction of edge 

itself. 
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And this we can see here in this figure they are the orthogonal projections of E  on to the 

edges itself.  
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The discrete counterpart is going to have a co-ordinate invariant definition. So the co-ordinate 

invariant definition of discrete  Curl E is defined using the Stokes law as follows . So we 

have the n curl  E which is  defined as the limit  is goes to zero that is the surface is 

converging to a very very small area it is going to be the  closed integral over the contour  

which is Defined by L E.dl  divided by S. So this is going to be the way we define the co-

ordinate in variant definition. So this is the co-ordinate invariant definition of curl E. And as 

you can see in this expression s is the surface spanning the closed curve L  n is a unit normal 

to S and T L is a tangential vector to L with magnitude equal to the length which is the dl 

itself .       
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Now we are going to see how this curl  operator is going to behave. We know this from our 

previous lectures on algebraic topology and other methods that is going to take a value that is 

defined on the vector HL and it’s going to take it to the vector HS. And this we have seen 

also in the  algebraic topological method and this is the way we define it and based on that we 

can find the values the individual components of curl of E as RS x prime  RS y prime  RS z 

prime and it is a transpose because we are talking about a column vector  and it’s going to be 

equal to the curl of E . For a 2 D  case or simple problem that we are trying to address here 

which is the transverse magnetic field  you will have RS x Prime   I comma J plus half is 

equal to as you can you can see here it is J plus half so it has to be y prime  EL z prime  I 

comma J plus 1 minus E L z prime  I comma J.  
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This is the component of the curl and it is very similar to Dow EZ divided by Doe y. So this 

is the first component we are looking into. The second component will be with respect to X 

so you see I plus one I Plus half comma J.  So it is the Doe E Z divided by Dow X component  

in 2D. So  EL z prime  i plus  1 comma J minus ELz Prime i comma J. As you can see what 

we’re doing is forward differencing with respect to y prime and forward differencing with 

respect to x prime so these are the forward differencing or we’re going to do forward 

differencing for EP.  
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So now we are going to look into the third component which  is the r s z prime components 

and as you can see here we have I plus half comma J plus half so it means it has both the x 

derivative and the y derivative and what we are seeing here is a very different expression to 

what we had before. Here in this expression we had always  the L component the length 

component as the  denominator whereas we see them here on the numerator.  

So what we have done is we have just  multiplied the appropriate L terms in the numerator 

and we did the same thing at the denominator and then you multiply Lx  and Ly what you get 

is a surface area and you see here S of z  prime I plus half and J plus half . This is a surface 

area and the surface area is nothing but the multiplication of the appropriate Lx and Ly term 

and the third component is this RS z prime component.  
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And Now what we can see is the expressions for RS x prime and RS y prime contain only the 

EL z prime component and that we have seen here in the expression it has only the EL z 

prime component. Whereas the expression for RS z prime contains both Lx prime EL x prime 

and EL y prime. So that is something we know this is something we expect from the Maxwell 

equation itself. And this part is very much allowing us to introduce discrete analogs of the 

TM and TE modes. 
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So what we are going to look at is discrete Curl E component and this discrete Curl Operator  

and we represented in the 3 by 3 form as follows as we can see the first row two columns and 

the second row two columns they have zero so the elements R  13 and R 31 and elements R 

23  and R 32 are symmetrical elements where as the leading terms are zero so this is the way 

we are going to define the Curl discrete Curl Operator. 
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Like the way we did the discrete Curl E operator we going to talk about discrete Curl B 

operator however here there is a difference we will include the permittivity and permeability 

as part of the discretization itself. That being said we cannot separate them when the grid is 

so irregular and discontinuous.  So the 1 by Epsilon and so the so the permittivity and 

permeability will be part of the discretisation itself so we can discretize the compound 

operator. We call it compound operator because the permittivity and permeability parameters 

are going to be a part of the curl operator itself and we define it this way. We write this way 

in a compact notation and we see that Epsilon and mew are discontinuous and the grid is not 

smooth we cannot separate Epsilon and Mu we cannot separate them from the Curl 

discretization itself. So that is the reason we keep them together. 

(Refer Slide Time: 17: 04) 

 



 and we can construct the district analogue of full operator the compound operator using a 

discrete analogue of the integral identity so we start with the integral identity this is from the 

basic vector calculus when we have any integral over a volume A Curl B integrated over the 

volume minus integrated over the volume B Curl A DV it is nothing but the closed integral 

over the closed surface that encloses the volume B Cross A N ds.  So we are talking about the 

normal projection of B cross A and the surface is going to be the surface that is enclosed in 

this volume.  
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So if we substitute A is equal to E and B is equal to B in this equation what we get is 

essentially the equation the equation that will give us the discrete Curl B operator and we are 

going to get them through this equation where we define the compound operator as the Curl 

star. So this is the compact notation that we can use. 
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So we are now going to do the Maxwell equations as you can see we have not separated mew 

and Epsilon out of the equation we are going to keep them as an integral part of the equation 

itself. So this is done because then Epsilon and mew are distant universe and when the grid is 

non smooth this is the way we have to do it in order to get the discrete analogue proper. We 

can do that time  stepping as a forward Euler method and we can get the first curl  equation as 

follows  Where Alpha One has to be defined.  I will  define it in the next slide. 
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And we can also define the same way the second  curl equation and here we have alpha 2 and 

now we’re going to define what is alpha one and alpha 2 in this equation. So E Alpha 1 is 

equal to Alpha One multiplied by E  n plus 1 plus  1 minus Alpha one time En  

 So it’s going to be some kind of an weighted average and the waiting is going to be defined 

by Alpha one in this case.   So the second equation will be Defined by Alpha 2 again there is 

going to be  some amount of the time step in a nd some amount of the  most of the time  is 

going to added in order to get the value of E alpha 1 and as you can see the t n  is going to be 

the end time step where delta T is going to be the time discretization.  
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One can see that it includes both the implicit and explicit formulation. If we put Alpha 1 and 

alpha 2 E is not equal to zero we will have both n plus  1 and n terms having so it will 

become so both the n plus 1 terms will be part of the update equation for n plus one will be 

implicit formulation whereas if we put Alpha One alpha 2 is equal to zero both of these first 

term will go will disappear and will have only this term. And this will be again 1 minus 0 and 

1 minus 0 so it will be just E n and B so then it will become an explicit method. 
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One can also see when we do the dot product of the diversions on both sides what we get is 

the divergence of B n plus 1 minus divergence of B n is equal to 0 because this is a identity 

when you have divergence of Curl the divergence of curl will always be 0 this is from vector 

calculus hence what happens is once the divergence is satisfied for n the time step it will be 

always satisfied for n plus 1 the time step. And you can go on doing it recursively so once it 



is satisfied for n plus 1 it will be satisfied for n plus 2 so on and so forth. So for all the time 

steps it is valid.  
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So let us look at the TM mode what we will have is the BS n plus 1 x prime minus BS n x 

prime this is the time stepping where we have B as n plus 1 x prime minus B as n x prime 

divided by delta t is equal to minus R 13 EL alpha 1 z prime. And similarly what we get for 

the second term is BS n plus 1 y prime minus BS n y prime is divided by delta t is equal to 

minus R23 E L alpha 1 z prime.  

So we will get the third equation in a very complicated form because we are going to have the 

complex operator coming into play and we will get an equation which is given by this 

complex term. We are not going to go much into the detail of this because we just wanted to 

introduce this method.  
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If you want to derive this individual equations step by step we can give references but for 

now it is enough if you take it at the face value. 
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So when we put alpha 1 and alpha 2 not equal to 0 the integration method becomes implicit 

and every time step will be solving a linear equation which is given by this expression. So 

what we will get it is B n plus 1 is equal to minus delta t alpha 1 curl E n plus 1 plus F B (B n 

E n). 

(Refer Slide Time: 23: 17) 

 

Where we have to define the F E and F B we will define it in the next step. Similarly we get 

for the second expression the complex curl operator coming into play and the expression is 

given by this equation. And here we have to define F B.  
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Like we have to define F B here.  
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I think this is getting really really crazy here with the expressions and I wanted to be very 

clear this is a very very advanced method its not something that you can take it at the face 

value of the expression that we are seeing here. So for now its enough if you understand that 

there is going to be a term that we call it as F E and F B and these terms are going to be 

calculated based on the alpha terms that we have defined.  
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And now you can think here we are talking about two equations and if you are in a simple 2D 

formulations you will get three equations but basically we can combine these two equations 

into one equation and that is what we do normally in second order wave equations and that is 

what we are going to do also in this case. We can eliminate the B n plus 1 term and obtain the 

second order equation in E n plus 1. And this is something you can intuitively understand it 

from the wave equation point of view of course the terms here are too complicated what we 

have here is an A operator operating on the E n plus 1 the value that we need to compute. The 

moment we defined the A operator we can compute the value of the E n plus 1 using this 

expression. And as you can see this expression is both having the terms of alpha 1 and alpha 

2 and when they are not equal to 0 it is going to be an implicit formulation. When they are 

going to be equal to 0 this entire term will disappear so the value is going to depend on the 

alpha 1 and alpha 2 parameter that we have defined earlier. And it is going to depend on the 

complex curl term that we have defined. And we are having the right hand side like before 

F(B n En). 

So the beauty of this expression is the left hand side is going to be having terms which are E 

n plus 1 and the A is nothing but complex operator which is given by this expression within 

bracket and on the right hand side we have the values which are purely dependent on the time 

step n. 
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Here the F(B n E n) is going to be given by this value. 
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A is the SPD operator and we discussed about positive definite operator when we discussed 

finite element method and on the top of it when the operator is also symmetric it is called as 

Symmetric Positive Definite. And A operator is the symmetric positive definite operator 

which follows from a structure and properties of the parameters that we have defined earlier. 

The reason for introducing mimetic method towards the end of our course module is it is 

really an advanced method and one has to spend quite a lot of time really looking into the 

derivation of each and every parameters. We are going to give you references for this for 

advance learners this is not for any course work this is something only out of your curiosity 

that you wanted to learn this method. You are welcome to really look into those course work. 

You are not going to be judged on your ability to understand all the individual derivatives of 



the mimetic method. However I would appreciate if you understand the over arching aspects 

of mimetic method and that is going to be the part of the discussion that we are going to 

summarize in the next slides. 
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So the mimetic method is an another way of looking at the discrete structure this is something 

you have to know it is going to be another way of looking at discrete structure because it is 

going to give as a similar formulation to algebraic topological formulation. In that sense there 

is going to be a lot of connection to algebraic topology. So what I want you to know is 

mimetic methods are very similar to the formulation of algebraic topology and they are 

another way of looking at discrete structures. What I mean by discrete structures are nothing 

but discrete formulation of Maxwell equation. And then we modelled them on a structured 

cartesian grid they resemble the standard finite difference method. So those are the three 

important points that you should know. Apart from that you should also know unlike finite 

element method the operator that we are going to define are going to be easily obtainable 

even on a very very coarse grid.  
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Because in a finite element method we are forced to find or forced to construct the consistent 

adjoin operator and it is going to be very challenging. Whereas in a mimetic method it is very 

easy to do on any general grid. And due to that reason the mimetic methods are going to give 

us an exact discrete counterpart of the partial differential equation we are modelling. 

So because of that they are going to be free of the spurious solutions that are common to 

finite element methods. For example in the case of finite element method based on the nodal 

element methods is going to have a spurious solutions. However you can avoid that by going 

into edge element method. But still somehow some of the edge element methods can still lead 

to spurious solutions. Whereas the mimetic method is completely free of spurious solutions or 

spurious modes. So that way it is going to be a better solution than finite element method. So 

those are the important aspects that I wanted to leave you with. You do not have to really 

know every detail of the mimetic method in order to go through this course work. It is 

mportant for you to know there is something called as mimetic method. The discrete aspects 

which are going to mimic the continuous PDE that we are going to model. Secondly we can 

take into account the discontinuous nature of the material parameters even on a rough grid 

and also because of these properties they are going to free of spurious solutions or spurious 

modes. 

So in that sense these are the important aspect of the mimetic method based finite difference 

method. They can be very similar to the finite difference method when you are modelling 

them on a standard structure cartesian grid and they will have similarity to algebraic 

topological method which dealt in a much more detail in the previous modules. I wanted to 



end this module with this overarching summary that are the aspects of the mimetic method 

that I wish every person who is taking this course should know. 

So I thank you for being part of this entire 12 weeks journey. We have learnt a lot during this 

entire 12 weeks.  
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We have looked into very simple basic methods like Finite difference methods 
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Finite Element method 
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Variational Methods 

And we also looked into some of the advanced methods like  
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Finite Volume method. 
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Algebraic Topological Method  

We have very briefly gave you in this module the overview of  
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Finite Difference based Mimetic methods 

With that being said there has been a lot of learning both for me teaching this course on an 

online platform like this. We have given our best in combining the theory with numerical 

experiments. 
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 And not only that wherever possible we wanted you to come and experience the Lab tours so 

that you can understand what are the devices we are modelling.  
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Because sometimes we have no clue about a wave guide.  
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About an antenna 
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About machines transformers. So we wanted to break that barrier and we wanted to introduce 

you to physical aspects of devices that we are modelling . So in that sense we wanted to take 

that devices in our hands feel them physically and understand them there parts their aspects 

their functionalities their important dimensions so on and so forth. So that is what we did 

during the Lab tours. 

And I feel Lab tours are more and more valuable for people who are coming from outside 

electrical engineering. If you are coming from departments like Physics Applied mathematics 

it is going to be very important element so that you can understand physically what are the 

devices. Because some people would have never seen antennas. That is something we like to 

break and that is the reason we are integrated where ever possible the lab tours into the course 



work and further more we are in a course called computational electromagnetics. So we 

cannot do away with simulations. We have to do some simulations and we have to make sure 

simulations are integral part of this journey and I am sure you have seen that we have given 

you a lot of exercises we have tested lot of exercises during the course and we also 

encouraged you to program your own codes and test it. 

And I am sure that you have discussed various aspects of simulation during the last 12 weeks 

or so in the forums and our teaching assistants were able to answer those questions much 

more supportively. And I personally hope that you have learnt a lot about the basics of 

computational electromagnetics. Not only that your prospective and your understandings and 

your ability to model electromagnetic problems have changed in that sense I feel that we have 

given you a new foundation we have given you a new bases to begin with your journey in the 

electromagnetic field it does not end with the code it has to continue if you are an engineer 

working in a company its your daily routine if you are a scientist working in lab this is going 

to be your bread and butter. And also you are a PhD student this is going to support you in a 

very long way. So in that sense I hope I personally believe that this course has given you the 

prospective. I would like to hear about your opinions on the forum.  

With that being said I wish you all the best for all your future projects and also I wish you 

best of luck in the forthcoming examinations. Thank You! 

 


