Computational Electromagentics and Applications
Professor Krish Sankaran
Indian Institute of Technology Bombay
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We started this week’s lecture building on the previous week’s introduction to finite volume
method
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We further developed the idea of Perfectly Matched Layer technique introduced in the earlier

lectures for advanced applications.
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We looked into a simply kind uniaxial perfectly matched layer formulation for Finite Volume
Time domain simulation.
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We showed some applications using rectangular geometry using this PML formulation
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Radial U-PML Anisotropy is “ locally "
defined in the radial direction

x, 1, 2) - Global coordinates

(X,, V,» 2) = Local coordinates

Radially Uniaxial Behaviour

#* Approximation perfect at infinite PML radius of curvature

{;9 # Accurate enough for most engineering applications!
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We further extended this idea to include a more general radial uniaxial PML
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Showecasing pros and cons of this generalized formulation for 2D applications.
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APPLICATIONS

Top-view
- Planar-P :
58 PEC 1o of (ONOF-PML X :
3 X 3)
9= — i w
P -
T -
N PEC Measurement Side-view
centers
o
WP

We later studied using a simple wave guide problem. The epicacy of radial uniaxial PML for
finite volume time domain applications
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We also compared the performances of a standard silver Muller absorbing Boundary

condition and uniaxial radial PML in the finite volume framework.
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We demonstrated the impact of source locations in the PML absorption behaviour
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Later we discussed a critical role where radius of curvature of radial PML placed in the PML

absorption performance.
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We later discussed some practical tips for making some trade off between accuracy and
computation cost while using these advanced methods.
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We also simulated some advance applications like a horn antenna.
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And coupling between 2 Archimedean spiral antennas using radial PML and Silver Muller
absorbing boundary condition in the finite volume framework.
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We compared the computed radiation pattern and;
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Cross coupling to discuss the performance of different domain truncation techniques in the
finite volume time domain method
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CHALLENGES

Fundamental Limitations of FVTD Method

# Numerical Dissipation: Spatial discretization is non-memetic!
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Finally we also discussed one of the biggest challenges while using Finite difference time

domain method namely the numerical dissipation.
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We also discussed source of such dissipation while computing the flux function and how it is
inherently timed to the manner in which we do the spatial discretisation and compute the flux
function.

We also briefly alluded how and why co locating electric and magnetic fields in space and
time affect the duality relationships that exists between them. We mentioned the coefficient
between space and time while using the finite volume formulation does it consider the
underlined topological aspect of the electromagnetic quantities
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Towards the end we also introduced a simple heat conduction problem using finite volume
method.
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And also explained how we can model such problems using matlab.
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In this week’s lecture during the lab tour we also modelled and simulated the permanent bar

magnet and monopole antenna problems.



(Refer Slide Time: 03: 53)

We carefully learned the theoretical aspects and applications we studied this week
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Finite volume time domain method is not normally discussed in any graduate course work in
computational electromagnetics

Hence take this opportunity to learn as much as you can during the course work and also

disclose your work
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In the next week we would be introducing one of the most beautiful methods in
computational electromagnetics there is not Algebraic topology. This is one of the rarest
methods that you will learn in any course work or computational electromagnetics. | am very
much excited and | hope you are equally excited as well. So we will see you next week Until
then Good Bye!



