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Finite Volume Time Domain Method-III 

We are now going to look into a very simple straight forward problem of using finite volume 

method we have discussed it length about the method and its formulation for Maxwell 

equation it has been very well tried and tested for various applications and I have shown you 

some of the applications for the course of the lectures we looked at the spiral antenna 

simulation you have looked into waveguide simulation we have also look into perfectly 

match layer applications in finite volume method so now using a Matlab example we want to 

see how the simple problem as such as hyperbolic problem can be formulated and we can test 

one of the problems that we normally come across hyperbola formulation which is heat 

collection problem and see how this problem can be model using finite volume method. So 

let’s look into the basic equation which we are interested in which is the hyperbolic equation 
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So the hyperbolic equation in general will have the form doe u by doe t plus divergence of a 

flux function is equal to 0. And of course there will be a parameter Alpha that is a parameter 

that we multiply this is general general formulation of the hyperbolic form but let’s take the 

conservation law and Maxwell equation can be casted in this particular form but let’s take a 

simple one dimensional form applied for simulating a problem on matlab so let’s start with 

problem where we have only one dimension so I will have Doe u by Doe t plus Doe of the 

flux function let’s call the flux function as C by Doe x is equal to zero so there is a 

relationship between these two terms so this is a flux function this the divergence all the flux 



function where the flux function F(u) is equal to see once you have this week and write them 

in the integral form integrating along the domain you integrate it along x so X goes from x of 

a to x of b we have Doe u by Doe t DX equal to so we have a minus sign that is coming 

which is – of the flux function integration so integral of x a to x b Doe C by Doe x dx  this 

can be simplified into is equal to minus sign outside will take c[u (x b) minus u(x a)] so this is 

the value so now we are going to use the midpoint rule so we can apply certain algorithm for 

the left hand side come as well so let’s take it further.  
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So what we have got here is integral XA to XB Doe u by Doe t dx equal to minus Phi [u (x 

b)minus u(x a)] and this particular left hand side term can be simplified further by using the 

midpoint rule and the midpoint rule will give us (x b minus x a) Doe u by Doe t equal to is 

equal to the same thing that we have on the right hand side which is the control volume such 

that so if we choose the control volume I – half Delta x comma I plus half Delta x so this is a 

control volume so if we take a line like this and let’s say this is a minus half this is a plus half 

this is a + 3 by 2 so on and so forth the control volume I is going to be centred exactly at I 

and I plus 1 so on and so forth so these are the central control volumes.  

And where so if we say this is the control volume and we have the centre of the control 

volume at a delta x Delta x is equal to h we say i x h so this is the way we structure the 

control volume control volumes will have the value stored at the centre here and we can 

approximate the value at the edges using a very simple approximation that the value used r r r 

here is going to be the value at the centre itself Sophie say you approximately equal to you 

star so this is the approximation that we are using and once we do that we can use this 

information to compute the right hand side this is the information that we will use to compute 



the flux function where as we will keep you as you itself on the left hand side we’ll see how 

you do that step by step so what we have is. 
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(xb minus x a) multiplied by Doe u by Doe t is equal to minus {flux function atu (x b) minus 

u( x a)} for this we are going to use approximation you star is approximately equal to u (x a 

minus x b) will be given by Delta x which is equal to H so when we rearrange the term and 

use the forward differencing for time derivative what we get is u of i and plus one minus u of 

i and divided by Delta t is equal to minus 1 by h so I have taken the h on the other side x the 

flux function at x ( i plus half) minus the flux function defined at x ( i minus half)] so I have 

to close the bracket so this if I rearrange it little bit what I will get is u i n plus 1 is equal to u i 

n plus the minus sign is there NT really I will put( minus delta t by h ) and the flux function 

[Phi (x i plus half )minus Phi ( x i minus half) and for computing the value at Phi (x plus half 

)and ( x minus half). 
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I use this approximation which is the flux the field value at this point at( i plus half )and (i 

minus half) is going to be given by the value of the centre itself so this is a very crude 

approximation 
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We saw during the Maxwell equation problems that we can go higher order in approximating 

the flux functions on the surface using either muscle method of the method of waiting so this 

is a very simple straight forward approach which works fine for simple problem like heat 

conduction problems where dissipation is not an issue so we can still use such an 

approximation.  
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So what we get essentially is U of i n plus 1is equal to u of i n so i will take the minus sign 

which was here outside and write it directly using a minus sign. So I will have minus delta t 

divided by h. I will simplify it saying [ Phi (u i) minus Phi (u i minus 1)] How did I come to 

this point will be clear if I once again show you the stencil here. 
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So the flux at i plus half is going to be directly given by the value of u itself u at i so that is 

what I have written here u i. Where as for this u this i minus half the value at this point will 

be given by the cell that is sitting here. We have not written it but this is going to be the i 

minus 1so that will give me the value of the field here this will give me the value of the field 

here. Similarly this will give the value of the field here so on and so forth.  
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So this is the way we are computing the value. So i minus 1 will contribute to i minus half i 

will contribute to i plus half i plus 1 will contribute to i plus 3 by 2. So the value at the face 

centres here the faces are nothing but the end of the each of the elements in one dimension.  
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In three dimensions you might talk about the face centres using the triangles. So the value at 

this face centre the value at this face centre the value at this face centre so this will be the 2D 

case. But in the 1D case we are talking about face centres at the end of the edges. So the 

value at this point is going to be the value at this point. And the value of the neighbouring cell 

before will contribute to the value here so on and so forth. That is why we have i minus 1 

here.  
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And if we can simplify the subscripts a little bit and write the value of the flux, so flux of (u i 

)is equal to c multiplied by u of i where c is the propagation velocity of the solution in 

Maxwell equation the c will be the velocity of light itself the velocity of electromagnetic field 

that is propagating where as in this problem more general c will be the velocity of the 

solution propagation. So u i is propagation. So we use this notation we can simplify this 

equation even further as u i n plus 1 is equal to u i n minus c delta t divided by h multiplied 

by (u i n minus u i minus 1 n) So what is beautiful about this equation is the terms what we 

had on left hand side are using n plus 1. Where as the terms on the right hand side are having 

values only at u n so this is an explicit formulation. 
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And of course what we have also is there is a condition of CFL which says 0 less than C 

Delta t y h less than or equal to 1 so this is a CFL like condition this is for stability and this is 



a value for plus function and this is a final formulation that we have with this background we 

are going to study a simple problem using finite element method the problem what we’re 

going to do is a heat conduction problem and the formulation of the equation of the problem 

is going to look like this  
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So we will have doe u by doe t is equal to k some constant multiplied by doe square u divided 

by doe x square.  So this is a problem where we are going to use finite volume method and 

we are going to compare it also with the the finite difference method that we studied before 

because there is a lot of similarity at least on the one dimensional problem you will see the 

finite difference and finite volume will have some similarities and some differences.  
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So let’s take this particular problem and the problem has certain boundary conditions and 

some initial conditions the initial condition is u (x,0) for all x at time equal to 0, the solution 

is going to have the following relationship. So u (x) is equal to 0.1 sin 4 pi x by L ; L is the 

length of the domain. So we go from 0 to 1, so L will be equal to 1. 

And what is also important to know is there is a boundary condition which is nothing but 

u(0,t) is going to be 1 and u(L, t) that is going to be equal to 0. So L is equal to 1 so we can 

write u(1,t) is equal to 0.  
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So if you look at this problem what you will have as some initial condition certain patterns 

the pattern is going to have 4pi x by L as the value so if you look at it and try to draw it so 

this is X equal to let’s say 1 and X equal to zero; At X equal to zero a solution is going to 

have value that is equal to 1 so if we say this is one search going to have a value 1 but it is 



also going to have some reputation because it’s a sinusoidal function and it is going to have a 

value of zero at the end and the in between 0 and 1 it is going to go through certain 

parameters so if you put X equal to zero then this what you will get is the value 0 but it will 

also have a value that is one because it is being said as 1 so this is the boundary condition this 

is a natural condition in which it propagates so let’s see how we can simulate this problem 

using finite volume. So for that we have to start with discretising the left and right hand side 

what you will do is we will do Central differences both for the time and for the special 

derivative. 
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So what we have got for Doe u by Doe t using the central difference in will be u( n plus 1) 

minus u(n minus1) divided by 2 delta t this we know from our finite difference method 

modules and when we want to do the same thing for the special derivative but with the 

second order this is going to be given by u n i plus 1 minus 2  u n i plus u n i minus 1 divided 

by h square. This is central differencing space and what you are going to do is we are going 

to substitute for this one using averaging so what you are going to do is basically we are 

going to say u i n is going to be given by u n plus 1 plus u n minus 1 divided by 2. So I am 

taking the old value which is u(n minus 1) and the current value is u n future value is going to 

be u n plus 1 so I am taking the old value plus the new value divided by 2 this will give me2 

u i n is equal to u n plus 1 plus u n minus 1.  
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So this is what I am going to substitute into this equation which will get transformed into a 

different form which is nothing but u n plus 1 so I am substituting the value for the left hand 

side as well u n minus 1 divided by 2 delta t that is equal to [ u i plus 1 n minus ( u n plus 1 i 

plus u n minus 1 i)  

(Refer Slide Time: 22: 36) 

 

This is what I am substituting here so this should have i, these are the subscripts . So once I 

substitute that here what will happen is I will have this two terms here  
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And then I will have the last term unchanged [ u i plus 1 n minus ( u n plus 1 i plus u n minus 

1 i) plus u n i minus 1] divided by h square. And if I rearrange it I keep only u n plus 1 i so 

there is another term of u n plus 1,i here so when I bring them back all in one side what I will 

get is u n plus 1 i equal to 1 minus Beta divided by 1 plus Beta of u i n minus 1 plus Beta 

divided by 1 plus Beta [ u i plus 1 n plus u n i minus 1]; where beta equal to 2k delta t divided 

by h square. 
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k is the constant that we had in the starting of the equation and this is the way the Beta is 

calculated. So there is a lot of similarity between this approach and finite difference approach 

and of course these are some differences. The differences are nothing but the way we are 

computing the fluxes and how we are approximating the fluxes but now let us look into the 

program itself and see how the initial value and final value are being replicated  
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So this is the program so I am going to write it for 150 steps. The parameters are L equal to 

the domain length  
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K is the heat diffusitivity; I said L equal to 1 and K equal to 1. 
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And the other parameters dx equal to L divided by (n minus 1). So this is going to be the h 

value as well. And dt is going to be dt is equal to twice the dx square value  

(Refer Slide Time: 25: 13) 

 

And we are setting the initial profile q equal to 1.  
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So I said the value is going to be 1for x equal to 0. And 0 for x equal to 1 so these two points 

are fixed and in between it is going to have a sinusoidal variation and L we have set it to 1. 

So it is going to be 4 pi of x. So it will have some kind of at this point it is going to be equal 

to 0. So if we are simulating this problem and we are going to see what is going to happen. 
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So go back to the code what we see is we are setting the values for the initial profile 

  



(Refer Slide Time: 26: 13) 

 

And this is going to be the value that we are giving 
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And we are trying to plot the initial value and also the computed value the computed value 

we are using the method called as Dufort Frankel Scheme. And Dufort Frankel Scheme is 

nothing but the method that we have used here. 
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So this is for u n Dufort Frankel Scheme; substituting for u i n we are substituting the value 

that is average of the 2 time step values 
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So that is what we have done here in the code. 
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And we have set the boundary condition to be equal to 1 boundary condition at u(n) which is 

the last point is going to be 0. 
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And the value of the updated equation is also going to get plotted so initially we will have v 

initial which is going to be given by the dotted lines. And then we are going to plot the 

updated equation so what we will see is the wave heat conduction is going to move. And we 

are going to plot the value of the u at time step t equal to 0.03 which is nothing but  
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This delta t multiplied by the number of iteration we are running  
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So number of iteration we are running is 150 so if we do 150 multiplied by delta t we will get 

that. So let us run it and see what is happening. 

  



(Refer Slide Time: 27: 54) 

 

So this is a dashed line you see that the value is 1 initially and then it goes to 0. And you see 

that the value of the computed solution after the time step is 150 steps forward. We say that it 

is propagating in this manner. So if we can re run again we will see.  
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I will have to rerun it with little bit more time pause. So let me put time pause is equal to 

0.001 
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I will reduce the time stepping further  
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I am reducing the pausing between the simulation even more. 
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So this is the way the heat conduction is going to propagate and the initial values are given by 

the dotted lines and then the final value is given by the solid line at time step 150. So this is 

the very good example for you to try and the source of the code from this book An 

Introduction to Computational Engineering with Matlab. I encourage you to practice coding 

in One dimension and two dimension which will be very good for you to understand the 

methods, mathematics and also the complication. It is not good to go directly to three 

dimensional problem and code it. So we have tested finite volume method both using a one 

dimensional problem like a simple heat conduction problem. And I also shown you earlier 

some of the problems that we simulated using the finite volume method like the horn antenna 

or the spiral antenna or the wave guide truncation and the PML applications. 

So in that way we have covered quite a bit of simulation using finite volume method so I 

encourage you to program your own code at least for one dimensional problems so that you 

get to know the method more and more closely and you can differentiate various aspects of 

the method compared to finite element method or finite difference method that we can master 

the technique and also know when the method can be applied and when it cannot Thank You! 

 


