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This week we introduced one of the alternative methods for modelling electromagnetic
problems namely the finite volume time domain methods
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Rate of change of total-field inside the control
volume is ONLY DUE TO FLUX FLOWING
@ INTO AND OUT of the control volume.
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We started with the technical background of this method setting the bases for Finite Volume

formulation
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To solve a simple advection equation.
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BACKGROUND
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Later on we modelled the one dimensional flow equation using finite volume method.
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DISCRETISATION
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We discussed how the spatial discretisation is carried out
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DISCRETISATION
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In the finite volume frame work
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MAXWELL SYSTEM

Maxwell System
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Semi-Discrete Maxwell System
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Particularly for the case of Maxwell equations
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MAXWELL SYSTEM

Material Matrix
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Semi-Discrete FVTD System

@ Flux function
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We emphasized the role of flux function in the finite volume frame work and discussed

various approaches to compute the flux function.
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FLUX FUNCTION

Godunov
a, Scheme
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This includes the famous Godunov approach
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MUSCL
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And the monotone upwind scheme for conservation laws shortlu abbreviated as MUSCL

algorithm for the Finite volume method
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FLUX FUNCTION

Godunov scheme is highly dissipative for CEM
MUSCL is an improvement but still dissipative!

Amplitude

— Exact
— MUSCL
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We remark the pros and cons for these approaches
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Particularly emphasizing their computational cost and accuracy
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FLUX FUNCTION

Centered Flux / Flux Averaging Scheme
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We later introduced the centred flux averaging scheme
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FLUX FUNCTION
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F, = Interpolated nodal field value
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F., = Barycentric field value of triangle [
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Truly upwind scheme and
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FLUX FUNCTION

Geometrical Reconstruction Scheme

Field computed based
on geometrical

properties
Approx. FC values No need for
Weighted nodal values computation of

_. Computed BC values gradients at the BC

NPTEL
The Geometrical reconstruction scheme as alternatives to the more popular Godunov and
MUSCL approaches
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MAXWELL SYSTEM

Material Matrix

o = diag(i, pi, i, €i, €i, €
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Semi-Discrete FVTD System
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Later we explained the time discretisation for the finite volume method
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TIME DISCRETISATION
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We elaborated the most widely used Lax Wendroff
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TIME DISCRETISATION
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And Leap Frog time stepping schemes for Finite volume method
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DOMAIN TRUNCATION: 1

BpML | | upML

PML

M-PML | | GT-PML | CFS-PML

B-PML : Bérgnger PML

U-PML : Uniaxial PML

M-PML : Modified Lorentz Material PML
GT-PML: Generalized Theory based PML
CFS-PML: Complex Frequency Shifted PML

{,,3M-ABC: Silver-Muller ABC
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Finally we introduced certain accurate domain truncation techniques in the Finite volume

framework. We first discussed the simple Silver Muller absorbing boundary condition and

then introduced the more accurate perfectly matched layer approach for Finite volume

method
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DOMAIN TRUNCATION: 1

B-PML (Non-Maxwellian Model)
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We discussed two broad classes of perfectly matched layers namely the non Maxwellian

Berenger PML and the Maxwellian Uniaxial PML.
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In the lab tour we discussed a modelling exercise involving a multi mode optical fibre
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And we simulated various mode profiles for this multi mode fibre.

Please go through the concepts and examples that we discussed in this week. We will be
dealing on these basic ideas in the next weeks lecture. Post your questions in the forum
clarify your doubts and get ready for the next week until then Good Bye!



