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We will now discuss some of the accurate domain truncation techniques. So the title as it says 

its Part 1 of the domain truncation. Because there are further advancements to the techniques 

that we will discuss now. So as I start what I wanted to say is a very simple rudimentary 

approach is to truncate your domain is to put absorbing boundaries. So if you have a circle 

you make sure that you have absorbing boundaries on the surfaces of the boundary but in 

case of finite volume what has been happening in the last few years is basically kind of they 

make the domain go really far away order to avoid any of the reflections that are coming 

from the edges so what I mean by that is most of them happen is the absorbing boundary 

conditions are dependent on the angle of inclination for angle of incidence of the incoming 

waves so what happens is. 
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 So let’s say you have a surface and I say all this point. They are having absorbing boundary 

condition. So let’s say a wave is coming in this direction it gets reflected but if the wave is 

coming in this direction it gets reflected like this and obviously we have to reduce this 

reflection as much as possible because whatever comes in is getting absorbed but its not 

getting attenuated but there is still some amount of reflection so this reflection is not zero but 

when it is having a normal incident as in when a wave comes normal to the surface the 

reflection is less. So the absorbing boundary conditions which have been used in finite 

volume method are not really that accurate. So what happens if people with try to put 

boundaries at very very father distance so as to minimise whatever is getting reflected let’s 

say your computing something here you put the boundary really far.  

So that whatever reflection comes back is taking long time so that way they were able to 

avoid most of the practical problems but again this means if I have to put a boundary here I 

have so many cells that are in between which are going to also increase the computational 

cost so until 2004 2005 the absorbing boundary conditions of silver Muller silver and Muller 

Thevar to people there boundary condition is the most common one so in 2004 2005 2006 

onwards there was a series of paper that were published on improving the boundary condition 

using perfectly matched layer we discussed perfectly match layer in our earlier module on 

finite difference method and also finite element method so we will be discussing about the 

perfectly matched layer so in other words we call it as pml 
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There is a group of PMS so this might be shocking for you that there are so many pml all we 

know is Berenger is a french engineer first published his work is formulation is a quiet known 

one and of course there were other modulation other changes to that Berenger PML which is 

called universal pml modified Lorentz material pml or generalized theory based bml or 

Complex frequency shifted pml and of course the standard boundary condition of silver and 

Muller so in this lecture we will be focusing mostly on the first two types namely the 

Berenger PML and the PML of the uniaxial layer so these are the two things which we will 

be focusing on for people who are interested in those other pml areas we could give some 

references and they can look into it but these are the first 2 pm else or the most commonly 

used pml and that is what we would be focusing on so let us go into the theory of those 2 Pml  
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So what is happening is you have a wave that is coming in and it’s wave it’s not enough for 

the wave to be let’s say absorb but they have to also attenuated so what you are talking about 

is there is a propagating mode and we have to covert that propagating mode Into 

exponentially Decaying mode so that is what is Basic Physics behind the DML theory so 

what you are talking about is propagating mode to Decaying Mode inside the pml. 
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So I said the word physics behind the bml theory so award of a caution has to be made here 

so when I say physics behind it people expect that they are physically realizable so that’s not 

the case here so the case what is in the case of non maxwellian or Berenger PML there is no 

physical counterpart of those field that we are computing they are truly mathematical this we 

have already covered in the case of finite difference method I am repeating for people who 



have not followed that lecture so this field what we are computing in the case of Berenger 

pml they are purely mathematical manipulation of the field equations so with that being said 

we will look at it in more in detail in the following slides so I used the word non Max alien 

just to make sure that there is no physical counterpart of those fields so in other words they 

are not physical and they are doing that by splitting of the field we have to do more 

computation and they are Un physical pml fields this I have mentioned it.  
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The counter part of that is the maxwellian ML which is also called as the uniaxial pml as you 

can see there is something different in the case of the maxwellian compared to the non 

maxwellian so what we are calling them is anisotropic material and these materials are an 

isotropic because the Mu and Epsilon permittivity and permeability there not scalar quantities 

but they are tensor quantities and we are not doing any field splitting and there is a physical 

pml field that we can compute they are physically computable and also there is a physical 

counterpart of those fields so again the word physically computable or physical counterpart is 

bit of a stretch of a word the question is field itself something is that you cannot measure 

electric field or magnetic field is only something that you can deduce based on the value of 

the potential or the voltage difference.  

Or in the case of magnetic field its current field itself is a mathematically reduce quantity but 

even then in the case of splitting of the field there is no counterpart there is no real relevance 

of that is purely mathematical but in the case of an isotropic material you can say you can 

somehow kind of mimic the behaviour using certain anisotropic materials so that’s the reason 

I said they are physically meaningful or physical pml fields again take this particular thing 

with A Pinch of salt so we will see now what are the corresponding equations so we will see 



now how this maxwellian and non maxwellian model r differing for a simple two 

dimensional problems so we will take a transverse magnetic problem 
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In other words what we have is the field quantities q will have components for the magnetic 

field in the X and Y direction and the electric field is only in the Z direction so this is the 

transverse magnetic case so you can also do the same thing for electric field in the X and Y 

direction and magnetic field in the Z direction in that case it will be a transverse electric case 

so if you are writing down the Maxwell equation for transverse magnetic case what we will 

have is Mu dH x by dt so these are the partial derivatives is equal to minus dE z by dy; and 

similarly we will have Mu dH y by dt is equal to dE z by dx and we will have the third 

equation which is respect to E z which is equal to we will have two components dH y by dx 

minus dH x by dy. So what we are having here is we are having components which are 

basically the curl terms. These are the curl terms. 
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 So what we are going to do now is we are going to say this is the standard Maxwell equation 

in a computational domain.So what we are going to do now is add certain losses to it. So the 

losses are basically H x similarly there is a loss in y direction and then there is loss in the z 

direction 

So once we do that we are basically making the wave to decay in a particular direction what 

we want so if we say that we wanted to decay it along the x axis so this is the way we have to 

do it. And these terms are can be split into losses into x direction and losses in y direction. so 

let us explain this in the next slide. 
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So what is happening now is we have components of E is split into E zx plus E zy and again i 

am repeating this is purely a mathematical trick. And I am saying sigma will have 



components which are sigma x and sigma y. So these are the losses of damping x and y 

direction travelling waves. 
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So this will give us a kind of a equation for if we put this value E z in the case of this 

equation here we will see that we will have 2 equation instead of 1 equation in the case of E z 

component.  
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So let us look at how we are doing the same thing in the case of the Maxwellian model so 

once more we will see we have described in the case of the Non Maxwellian model so these 

are things what I have set. So let us look at how we can do the same thing in the case of in the 

Maxwellian model where we are having the values of material components the material 

parameters. The permittivity and permeability is no longer scalar its going to be a tensor.  
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So what we are having is the value of Epsilon by Epsilon , similarly Mu by Mu is equal to a 

[tensor] let us say I make the tensor look like lambda capital lambda. Which is equal to 1 by a 

a and a and I will have value 0 0 0 0 0 0). So basically it will be a equation which is diagonal 

whose components are given by the values here. And if I want the material to be anisotropic 

along x axis I say it is 1 by a on the first component. If I want to be anisotropic along the Y 

axis I put a here and 1 by a here. If I want it to be anisotorpic along Z axis I will do the same 

thing along the last component. So these are the components along which we are going to do.  
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So that is what we will see here in the slide the relative permittivity so when you talk about 

permittivity of that material divided by the value. So we are talking about the components of 

the relative permittivity accordingly and the physical meaning of this is I am basically 

stretching the material in a particular direction where I want the wave to attenuate in the case 



I want the wave to attenuate in the X direction I am stretching the X coordinate from X to X 

PML which is the stretching aspect and the stretching basically happens like a way that each 

of the component of X in the PML will see the value as x multiplied by a which is where a is 

given by this expression. So this expression is as you can see has a frequency component.  
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So what we are talking about is a is equal to 1 minus j sigma x by omega permittivity so this 

value is 2 pi f , so this will depend on the frequency of the wave that is coming. So that being 

said we can basically compute the values of a for each of the modes. And we can club in the 

form what we need so as to get a nice formulation.  
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So with that we are able to get a kind of an attenuation what we need. So what we see now is 

in the case of the domain truncation using Berenger PML instead of three equations where we 

got now four equations and this is based on the equation what I have said we said E z is equal 

to E z x plus E z y, so based on that you get two equations here. 
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And in the case of the Maxwellian PML you are getting also 4 equation , but the most 

important thing is this. The value for the fourth field what you are computing here is 

something that you have not computed in any of the other cases. If you see we have dy partial 

differentiation with respect to y axis for the Hx field is not computed in others here you have 

compute the values with respect to electric field here also you computed with respect to 

electric field.  



But here you computed with magnetic field but this is a very different flux it is a 

differentiation with respect to x not with respect to y. So in the case of the Berenger PML you 

have to compute four fluxes which is computationally costly. But when you look at the 

uniaxial PML which we call it as UPML you are also having four equations but the last flux 

is basically the flux that you have already computed in the first case. So you are not doing 

any additional work. That is what we will see in the next slide. 

So in the case of Finite volume methods we will mostly use uniaxial PML because it is 

computationally heavy compared to other Berenger PML. So to put things into context so we 

said we have two different ways of going ahead with the PML regardless of what problem we 

are solving we can use them as Berenger PML for the truncation or the Uniaxial PML and we 

said why we are going to use Uniaxial PML but not Berenger PML for the simple reason of 

the computational cost.  

So with that being said let us see the final set of equations what we will get for the TM case 

for doing any calculation. 
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So what we have here is we have problem of TM case and then we have this H x, H y, B z 

and B x so this B x is the additional component whose value we are computing and this is the 

attenuation that is also there in the H x side using the B x value and this B x value we are 

computing using this equation. And this particular expression what we said so these are the 

standard Finite volume equation with PML losses. The last one we will reuse the flux from 

the first equation. This we have discussed before.  
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And in the case of the basic TM mode we will have the components given by these values 

and we can compute them accordingly. So with that we are having a close form solution so as 

you can see if you need to compute problem you can basically use at this formulation. In this 

case I have used B x but maybe I have (())(19:17) it as K x. So this should be K x or B x they 

should be consistent. So let us see it here.  
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So this particular expression is the same one so we will also call this one as B x. So these are 

all the B x terms. So we have the first three equations which are the standard equations. And 

the fourth equation which is basically the equation computed based on the flux that we 

compute here and we have the additional term B x that is being updated using these form. 

And finally what we will have is this equation. 
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This equation says as you can see in the slide what you will have is the value of the thing 

what we are updating the vector is computed like this to and inside the domain where there is 

no PML you can put this loss term equal to 0. Remember this is B x not K x so this last term 

will be 0. And then you will have a natural update equation inside the boundary. And on the 

PML side you will compute the boundary losses or the domain losses based on this 

expression. 

With this we will come to the end of this module we have covered quite a bit in this module 

we have looked into the finite volume formulation itself with certain applications in mind. 

And we have also introduced domain truncation part 1 where we have looked into the 

perfectly matched layer for planar applications. So we will see in advanced method which we 

will cover in the next module as domain truncation technique part II. Some of the extension 

of this perfectly matched layers for other applications. So with this we will stop here and we 

will see you in the next module. Thank you! 


