Computational Electromagnetics and Applications
Professor Krish Sankaran
Indian Institute of Technology Bombay
Lecture 06/Exercise 03
Finite Difference Methods -1

The Example which we are going to look into now is umm heat diffusion equation. So we will
try to use the finite differencing schemes which we have learnt. Like the forward differencing
scheme or the Central Differencing scheme for this particular problem. Before going into the
problem itself let us look at the equation what we have at our hand

(Refer Slide Time: 00:40)

So the heat diffusion equation is going to be of the form (du by dt) the partial differentiation with
respect to time is equal to (d by dx) like we had in the case of the advection equation, partial
differentiation with respect to x of some quantity which we call (D du by dx). As you can see this

is second order differentiation in space, first order differentiation in time.
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So that is what we have got in this slide. And this is the equation that talks about the
conservation of heat energy inside a control volume. And the change in the energy inside the
volume is equal to the flux of the heat that is going and coming out of the control volume.
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So if we set d equal to constant in this particular equation. We get the second order in space

partial differential equation of the form given here.
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So we will have du by dt is equal to D times d square u by d x square. This is the second order in
space and first order in time.
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So what we are going to do now is we are going to apply for this particular term forward Euler
method that is the Forward Differencing scheme. And for this particular term we are going to use
Central Differencing scheme.
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So that is what we are going to see in the next slide. So we have approximated the partial

differential do u by do t is equal to (U n, j plus 1) minus (U n, j) divided by delta t plus certain
order of truncation which comes from the Taylor series expansion. And we will do the central

differencing as i said for the second order partial differential with respect to x as follows:



Again you will have certain order of truncation with respect to x. So we are using CD only using
terms at time step j that is more important to know. And if we do that we can approximately
equate the partial differential equation to the finite difference equation as follows.
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So what we have got now is (U n,j plus 1) minus (U n,j) divided by delta t that is equal to D (U
n plus 1,j) minus (2 Un,j) plus (U n minus 1,j) divided by del x square. And as you can see this is
the order partial differential with respect to x which we have used the Central Differencing
Scheme, and here we have done the forward differencing scheme.

If we rearrange the terms in such a manner that we keep only the (U of n,j plus 1) on the left
hand side and bring all other terms on the right hand side and substitute the value r for the
constant D delta t divided by del x square, we get this form of an equation. We have seen a
similar set of equation while we did the earlier analysis on the finite differencing scheme and this
is the same set of equation and r is equal to D delta t divided by delta x square. Again this is a

forward in time center in space.
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And the stencil for this equation is going to look of this sort. Like in the case of Advection
equation, this particular equation is very difficult to model for any real time problem particularly
for the reason which we mentioned before, that the delta t is going to be very very very small. So
we have to go very very slow in time stepping in order to make the scheme stable. But this is not
interesting because you have to wait for a such a long time before anything useful happens.
Assume that you are trying to simulate the interaction of a wave that is going and hitting a
scatterer for this propagation you are going to wait for such a long time before it goes and hits
the scatterer. So all these things are big bottle neck in simulating any practical problem. So we
do not use such a scheme in practical simulations. We will use some other kind of schemes like
the staggered scheme or lax scheme predictive corrected method so on and so forth which we
will see towards the entire course while discussing other methods as well.

There are different time stepping schemes that we will be using to make any numerical method
practically usable.

Yet another method which will be of interest is the implicit method. We have not discussed
about it yet, but i will show some examples while we are discussing for this particular heat fusion
equation. But before going further let us look into the Matlab simulation. How does the Matlab
simulation can be done for this particular heat diffusion equation using the Forward in time

Center in space. That is going to be our focus. So let us go into the Matlab simulation now.
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2 %%% Purpose: Heat diffusion in 1-D wire using Explicit Method
3 %%% Computational Electromagnetics & Applications (CEMA)
4 %%% Chapter: Finite Difference Methods
5 %%% Prof. Dr. K. Sankaran
6 %%% IIT Bombay, India &
7 %%% Founder-CEO, Prajnalaya, Zirich, Switzerland
8 %%% Krish@sanKaran.org
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10
11
12 %Define parameters for diffusion eqn & the range in space and
13 %time
14 - L= 1.; % length of wire
15- Te=1.; % final time

17 ??f%Parameters needed to solve the equation within explicit methoc

xk = 2500; % Number of time steps

19 =% = T/maxk;
I NPFEL

script n 15 Ceol 26

+

This is the heat diffusion equation which we were talking about. So we are going to model this

using Finite differencing method using Forward in time and Centered in space. So before going

into the simulation itself let us look into the parameters for the diffusion equation and also the

range in space and time.
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10
11
12 %Define parameters for diffusion eqn & the range in space and
13 %time
14 - L= 1&; % length of wire
15- T=1,; % final time
16
17 %Parameters needed to solve the equation within explicit methoc
18 - maxk = 2500; % Number of time steps
19 - dt= T/maxk;
20 - n=50; % Number of space steps
21 - nint=50; % The wave-front:intermediate point from

% which u=@(nint<n)!!
#dx = L/n;
%nd =1/4 %Conductivity
F=2 . »condxdt/(dx*dx); % stablity parameter (b=<1)
B ——
script tn 15 Col 26
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So what we have is we are setting the length of a wire that we are interested in modeling the

diffusion of heat on a

piece of wire.
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So what we set is this particular length is going to be equal to 1 unit, so this is the one
dimensional x axis, so we are interested in what is happening in the heat diffusion in this one
dimensional wire.
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12 %Define parameters for diffusion eqn & the range in space and
13 %time

14 - L= 1,; % length of wire

15 - T=1.; % final time

16

17 %Parameters needed to solve the equation using explicit method
18 - maxk = 2500; % Number of time steps

19 - dt= T/maxk;

20 - n=50; % Number of space steps o
21 - nint=80; % The wave-front:intermediate point from

22 % which u=0(nint<n)!!

23-  dx = L/n;

24 - cond =1/4 %Conductivity

25@ =2, %condxdt/ (dx+dx); % stablity parameter (b=<l)
26 §

27 )Initial temperature of the wire- a sinus

| NPTEL

script tn 57 Col 12

And also we are setting the final time the maximum time that we are going to simulate is also
one unit. So the parameters we need to solve is heat diffusion equation using explicit method or
discussed in this particular part of the code. So we are setting the maximum time step, as 2500
time step. We are setting the value of delta t as i said this is going to be very very small if you are
going to use forward in time centered in space. So that is given by the value t.



The maximum time divided by the maximum time step. So we are going to divide 1 divided by
2500 as you can see this is very small. And also the number of space steps is going to be 50.

So again the space step is not the (()) (08:32) is going to create the issue here it is the time step.
But again we have to set the space step which we have done here. And based on that we are
going to calculate various parameters

So the Parameters that we need to solve the equation using the explicit method are discussed
here. So the maximum time step is going to be given by maxk which is going to be 2500. And
the delta t is the time stepping as | said this is going to be very very small. So it is going to be 1
divided by 2500. And the maximum space step is going to be 50. This is not going to be an issue
here; it is the time step that is going to cause the issue. We need to set the maximum time step
and maximum special steps which we have done here.
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J ExplicitMethodAdvection_Eqn.m LaxMethodForAdvectionEqn.m HeatDiffusion 1DExplicitMethod. m +
) sImplementation of the Explicit method =1
41 - for k=1l:maxk % Time loop

42 - for i=2:n % Space loop

43 - uli,k+l)= u(i,k)+ 0.5%r*(u(i~-1,k)+u(i+l, k)=2.»u(i, k));

44 - end

45 - end

46

47 %Graph of temperature at dilfferent selected times

48 - figure(1)

49 - plot(x,u(:,1),'~"',x,u(:,100),"'~"',x,u(:,300),"'~',x,u(:,600),"'~")
50 - title('Temperature within the Explicit Method')

51 - xlapel('Xx")

52 - ylabel('T")

53

54 - figure(2)

55 — mesh(x, time,u')

56 -~<title ('Temperature within the Explicit Method')

57 .S Rlabel('X")

58 —‘*ﬁlabel( 'Temperature')
)  NPTEL

script Ln 47 Col 28

And we see the value of r which is the stability parameter, which is going to be set as r. The
stability parameter which we have discussed in the slide before is going to be 2 times the
constant d multiplied by delta t multiplied by dx square. So this is what we have here.
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) ExplicitMethodAdvection_Eqn.m LaxMethodforAdvectionEgn.m HeatDiffusion 1DExplicitMethod, m* K
16 =
17 %Parameters needed to solve the equation using explicit method
18 - maxk = 2500; % Number of time steps

19 - dt= T/maxk;

20 - n=50; % Number of space steps

21 - nint=50; % The wave-front:intermediate point from

22 % which u=@(ninte<n)!!

23 - dx = L/n;

24 - cond =1/4 %Conductivity

25 = r=2.xcondxdt/(dx«dx); % stablity parameter (r=<1)

26

27 %Initial temperature of the wire- a sinus

28 - for 1 = 1:(n+1) il

29 - x(1) = (i=1)#dx;

30 - ul(i,1)= sin(pixx(i));

31- end

32 <

33 ~:(;§!emperature at the boundary (T=0)

34 -~ _For k=1:maxk+1
|  MPTEL

4 usages of "dx" found script tn 25 Col 17

And we are initializing the temperature in the wire. And we are putting the boundary conditions;
we are going to implement it using the explicit method. Remember this is nothing but the same
equation which we had in the case of the explicit method.
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So we will go back in the slides and look at this r condition one more time and also the explicit
method algorithm that we have got.So what we see is, so the r value is D multiplied by delta t

divided by delta x square.
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21 - nint=50; % The wave-front:intermediate point from i
22 % which u=0(nint<n)!!
23 - dx = L/n;
24 - cond =1/4 %Conductivity
25 - r=R.xcond+dt/(dx*dx); % stablity parameter (r=<1)
26
27 %Initial temperature of the wire- a sinus
28 - for 1 = 1:(n+1)
29 - x(1) = (i=1)=dx;
30 - u(i,1)= sin(pi*x(1i));
31- end
32
%Temperature at the boundary (T7=0)

34— for k=1:maxk+1

{ u(1 k)-o i

) script Ln 43 Col 23

That is what we are having here. And we are using the condition for two times that value for the
reason that there will be the term of two that will be on the right hand side.
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As you can see in this equation. So r multiplied by 2. So this is the value that is going to be the
most critical value that is why we are making the value that is 2r not r itself. So let me explain
using the stencil one more time.
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So what we have now is stencils so if you say this is j this is j minus 1 this is j plus 1 and this is
n, nplus 1, n minus 1, so we are interested in computing the value at this point which is going to
be n,j plus 1. And we are going to use the values that are in n plus 1, j. So n plus 1, j this value,
we are going to use the value at n, j and we are going to use the value n minus 1, j. So these are
all going to contribute to the value of the solution that we are going to compute here.
Interestingly the time needed for the solution to propagate from this point to this point is going to
be shorter compared to the point here here. The time that one solution needs from here to here.
So the solution dependence on this point is going to be more critical for the stability rather than
the solution propagation from this point or this point. That is why we are going to take the
coefficient that we have in the equation for u of n, j. So this n, j.

So we are going to take the influence of the point n, j more significantly than the other point. So
that is why we are setting the condition that twice D delta t divided by delta x square should be

less than or equal to 1.
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21 = nint=50; % The wave-front:intermediate point from -
22 % which u=@(nint<n)!!

23 - dx = L/n;

24 - cond =1/4 %Conductivity

25 - b=R2.#condxdt/(dx#dx); % stablity parameter (b=<1)

26 % the stability condition depends on solution propagating

27 % from the point (n,j), hence we use b = 2r

28

29 %Initial temperature of the wire- a sinus

30 - for i = 1:(n+1)

31- x(1) = (1=1)%dx;

32~ uli,l)= sin(pixx(i));

33 - end

34

35 f"j%Tcmpcrn(urc at the boundary (T=0)
ik

~, script Ln 27 Col 44

And that is what we have set here for this particular equation. So the reason why we have set it
for r as 2 times D multiplied by delta t dx square is for that reason. So may be it might be helpful
if we change this one into b and explain this in the comment so that you do not get confused. So
we will keep this one as b and explain this in the comment, the stability condition depends on
solution propagating from the point (n, j) hence we use b equal to 2 times r. So that is why the
reason we have 2 here.
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36 - for k=1:maxk+1l -
37 - u(l,k)=0.;
38 - u(n+1,k)=0.;
39 - time(k)= (k=1)=dt;
40 - end
a1
42 %Implementation of the Explicit method
43 - for k=1:maxk % Time loop
44 - for i=2:n % Space loop
45 - uli,k+l)= u(i,k)+ 0.5«b*(u(i-1,k)+u(i+1, k)-2.%u(i,k));
46 - end
47 - end
48
49 %Graph of temperature at different selected times
50 Y A igure(1)
"*fj e B e e e B )
%, script Ln 45 Col 51

Other than that we can change this back to b here because we have changed on the top, the

simulation parameter as b. So this is a stability parameter, so it should be clear now that we are



using twice because the stability condition is going to depend, may be we can write it as stability

condition depends more on solution propagating from th

e point (n,j) hence we use b equal to

2rfor the stability parameter.So the code should be self explanatory for you to run it and test it

later on.
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21 - nint=50; % The wave-front:intermediate point from
22 % which u=0(nint<n)!!
23 - dx = L/n;
24 - cond =1/4 %Conductivity
25 - b=2.*condxdt/(dx*dx); % stablity parameter (b=<1)
26 % the stability condition depends more on solution propagating
27 % from the point (n,j), hence we use b = 2r for the stability
28 % parameter,
29
30 %Initial temperature of the wire- a sinus
31~ for i = 1:(n+1)

x(1) = (i-1)%dx;
u(i,1)= sin(pixx(i));

Ln 28 Col 14

So with this background, so we are going to simulate this particular problem and see what is

going to happen. Later on we can manually set the value

of b at different limit and see what is

happening. For now let us run the code, so we are running the code now and we are going to see

what is going to happen.
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47 - end
48 - end
49
50 %Graph of temperature at different selected times

51 - figure(1)
52 = plot(x,u(:,1),'=",x,u(:,100),"'~",x,u(:,300),'~",x,u(:,600),"'~")

53 - title('Temperature within the Explicit Method')
54 - xlabel('X")

55~  ylabel('T')

56

57 - figure(2)

58 - mesh(x,time,u')

59 - title ('Temperature using the Explicit Method')
60 -  xlabel('X')

61 7 ylabel('Temperature')

script tn 61 Col 22

So what we are plotting here is we are plotting the value of the temperature at different selected
times. We are plotting at time step 1, time step 100, time step 300, time step 600 so on and so
forth using different colors. So what we see is exactly that and then we are also plotting in the 2D
mesh temperature within you can write temperature using explicit method and we are seeing the
time step and also we are plotting the temperature.
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So with that you can interpret the result now. So what we see as result. Let us run it one more
time heat diffusion equation so temperature using the explicit method. So what you are seeing
are the two graphs, so the first curve is the initial temperature at different times step and then you



see that it is changing over a period of time. And also we have to see what is the value of b we
are using.
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So see we are using b equal to 0.5. But if try to change the value of b Let us say we are going
closer and closer to 1, let us see what is going to happen. So for doing that what i am going to do
is i am going to comment this particular part of the b and manually substitute the value of b. So i
will save this one. So i am going to set the value b equal to 0.5 once again and i am going to
simulate this equation.
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* FDMWaveEqn.m~
“1FOTD_10.m

#) FunctionDerivat,,
“) MeatDiffusion]...
* | MeatDiffusionl
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And i am getting the same result which is good.



(Refer Slide Time: 17:15)

@ MATLAB Window Help 2 4 o) WOXEH ThulZas Q
» O MATLAB R2015b - academic use
v % 93 / ¥ Users » Krish » Desktop » IIT-8B Lectures » CEMA » FOM » Matlab Example » Vi
Corentotder - K Y
B Home o New 10 MATLAB? See resources for Getting Started. x
b figure_1 2 Df
“) ABC_20_FOTD.m o0
) ExplicitMethod... 0.5000 4
“ " ExplicitMethod... .
) FDBOCD.m _
*) FOMWaveEan.m >> b = 0.5
* FDMWaveEgn,m~ 24
“1FOTO_10.m b = 2
*) FunctionDerivat,,. 25
“) HeatDiffusion]...
* | MeatDiffusionl... 0.5000 0
. - 3
>> HeatDiffusionlDExplicitMethod T
Workspace ® Y
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at Al 0.2500 2
dx [ X}
s
: fx>> b = 0.79

LT

Now | am going to change the value of b to let us say 0.75 and now i am going to simulate the
same equation.
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) ExplicitMethod...
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And i am seeing pretty much the same result.
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Current Folder
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“) ABC_20_FDTD,m
“) ExplicitMethod...
* ExplicitMethod..
) FDBOCD.m
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* FDMWaveEqn.m~
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“) FunctionDerivat,..
“) MeatDiffusion]...
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- 2 >> HeatDiffusionlDExplicitMethod IT:"
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dx 0.t
' s> b =1
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Do
I 0.2500 i
o
>>b = 0,75 2t
b
b = 3

So, now i am going to change the b value to 1and now i am going to simulate the same result.
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*) ExplicitMethod... L)
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#) FDBOCD.m

“) FOMWavetan.m >3

* | FDMWaveEqn.m~

“1FOTD_10.m b =

*) FunctionDerivat...

“) HeatDiffusion]...

* MeatDiffusionl,.
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>
Workspace ®
Name & val
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b 1 <

cond 0. :

at Al

dx 0.

' w0

And i will start to see the value is still ok.
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1 0.2500
>>b=1
b =
1

>> HeatDiffusionlDExplicitMethod
cond =
0.2500
ks> b = 1.1
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But the moment i go more than b equal to 1, let us see what happens. So i am doing b equal to

1.1.
(Refer Slide Time: 18:00)

@  MATLAB  Window Help y LKD) o) WOXED Thui2as Q
|
L N Figure 2
File Edit View Insert Tools Desktop Window Help ~

Current Folder ®
W Name &

- figure_1_2
#) ABC_2D_FOTD.m
*) ExplicitMethod...
* ExplicitMethod...
“) FDBDCD.m
*) FOMWaveEaqn.m
* | FOMWaveEqn.m~
“1FDTD_1D0.m
*) FunctionDerivat.,,
“) MeatDiffusion]...
* | MeatDiffusionl...

etails ~
Workspace ®
Name & val

b 1

1 cond 0..
dt al
Ldx 0.4

' L0

v % & ¥ B/ » Users »

>>

con

Jx >

NDddoe kR SSO9EAL- QA 08 a@




File Edit View Insert Tools Desktop Window Help

'nAzgu.‘. h N\SNO9ELA- QA 0 0@

on I | |
N ||
V-
"{"@. A A A A A e e A
L [] 1 02 [T) 04 [T) [T) or os [T) 1
NPTEL .

You start to see some kind of error which is you see that it is going to 1 multiplied by 10 to the
power 30 which is a clear case for instability.
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“) HeatDiffusion]... 0.2500 0
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So may be we can try to go b very very low, so i am going to change the value. Now i am going

to run the same equation
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It is still ok, but if I go 100th the point more than the expected value it is still ok.

So 1 10th more than the expected value, now i start to see the instability coming into play. The
solution still looks ok but the instability is already starting.

So what we have done now is to show that we cannot go more than the maximum limit by an
order of more than 10. So if i start going at point 1 this will not be useful at all. You will see that
the instabilitlity is clearly there and the value is 1 multiplied by 10 to the power 30.

So even by going 10 percent more than the allowed value of the maximum simulation time
stepping it is already not working. So as | said this is a classical example to know how to
program the finite differencing scheme using forwarding time and center in space for heat
diffusion equation.

We will provide you this code for you to try and practice a little bit the simulation as well. And
this is also a good way to learn certain criteria like the initial condition, boundary condition so on
and so forth which will enable you to do advance coding later on. So i encourage you to take this
code and practice and get the sense of it.

With that being said we have covered the example for Explicit Method or Heat diffusion
equation. And we will come back and discuss further details on the next things in the next
module.

Thank you!



