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Welcome back! In the last week we had the basic introduction to Finite Volume Time 

Domain Method where we briefly introduced various aspects of this method we discussed 

about what are the important ingredients when it comes to the formulation? What are the 

aspects of which we are talking about it for modelling electromagnetic problems. So in this 

week what we are going to do is we are going to look into the main aspects of computing the 

fluxes because the flux function is one of the main factor which defines the accuracy of this 

method for various electromagnetic problems. So depending on how we compute the flux this 

is going to impact the accuracy. So with that we will start with this week's second part. 
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So where the first part will be the discussion of flux function. Remember that I discussed in 

the earlier module that the flux will be something that we compute across the surfaces if you 

are talking about the 2D this will be the edges which are covering this area. If it is a 3D 

problem it will be a surface that is covering the volume control volume and then with that 

flux function we will discuss quite a bit about what are the different ways in which we can 

compute that flux. In addition to that we will also look into the time discretisation aspect 

because we have not covered so far how we are going to discretise the time. How we are 

going to go from time step n to n plus 1, to n plus 2, to n plus 3 and so on and so forth. So 

time discretisation is something that we will cover in this module. because this is going to be 



slightly different to Finite difference method. But still it has a lot of similarities so this one 

we will look into it in this lecture. 
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And also we will talk about some basic ideas about domain truncation I will cover one of the 

types and of course in the next lectures we will see more advanced domain truncation 

techniques with that we will start with todays lecture. 
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So we are going to discuss about flux function as to begin with.  

  



(Refer Slide Time: 02:47) 

 

So remember in the slide we discussed about a flux function in the semi discrete form. So we 

have a semi discrete form for the definition of the flux where the partial derivative with 

respect to the partial derivative with respect to t is equal to the 1 by Mu over V i , V is the 

volume. And then we have the sum of all the flux components that are coming. So we said 

that these are the flux components, so this 2 things are the flux components. And of course 

the S k is the value of the surface area in a 3D problem. In a 2D problem this volume will 

change into area and then the surface area will change into length of the side.  

(Refer Slide Time: 03:27) 

 

That being said the combine flux is something that we can write it as 1 vector. So which is 

given by the value here. So this thing is the first component will be the flux that is related to 

the partial derivative with respect to time for the magnetic field and the second one will be 



with respect to the electric field. So this is straight forward. So this is the basic thing that we 

will be looking into and we have to see how we can go on to compute this one in this lecture 
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So I have said in the past that flux is both ingoing and outgoing. 
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So when you consider a particular problem for example you have a triangle and this is your 

control volume and the values are in the centre and this control volume will have fluxes that 

are going in and out. So whatever is going out I mark it in red. And there is also fluxes that 

are going inside. So we said that the net flux will be the algebraic sum of those ingoing and 

outgoing flux.  
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So this is what we have been pictorially mentioned here and one way to do that is to use a 

scheme that is first order approximation. The first order approximation is called as Godunov 

scheme. Let me explain that a little bit in further.  
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What I have is I have two triangles and these triangles are let us say the left triangle with 

value q L the bary centric value and the right triangle I draw it with blue colour whose value 

bary centric value is written as q R. So this is the face centre; so we are interested in the 

projection way. So one easy way of doing that is we can say whatever is on the right will be 

the value here. So we say Q on the right will be the right value here and q L on the left will be 

the left value here. This approximation is very crude as you can see obviously the value on 

the bary centre and the value on the face centre will not be the same but still we can say 

somehow they are the same.  
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So the consequence of this is basically what I have shown here in the slide. So what is 

happening is we can say that it is a piece wise constant. We will see in the 2D how it will be 

in the next slide. But this is a kind of a constant approximation. Whatever is on the left so 

here qL is equal to q i and q R is equal to q i plus 1, where i and i plus 1 are nothing but bary 

centric values on the left and right hand side. And as I marked here this is of first order 

approximation.  
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Another way of doing that is we call it as Muscle scheme is monotonic upwind scheme for 

conservation law. The word Muscle comes from there. This is a kind of a scheme that comes 

from computational fluid dynamics. As I mentioned to you the idea of Finite Volume Method 

itself is coming from computational fluid dynamics and they have been using this for several 

applications in that domain. So this Monotonic Upwind Scheme for Conservation Law or 



other words called as MUSCL scheme is an approximation and this is a second order of 

approximation. So we will see how it is second order. 
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So what is happening here is what ever is on the left hand side of this interface will give you 

certain value but this value will not just be the value itself but the gradient. What I mean by 

this? Let me explain this further. 
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So what is happening here is? I have a value which is on the left hand side, and I have a value 

which is on the right hand side. And I am interested in this point which is the centre of the 

space. So there is going to be a gradient that we are going to compute between these two 

points. What I mean by gradient is the slope. The value of the function on this one will be 

taking into account this particular geometrical gradient so whatever is there so it will change. 

So if there is a slope here, so based on that we can compute a gradient between this point and 



this point, this point and this point so the slope will affect on the computation of whatever is 

going to be computed on the left and right hand side. For example q i will take q l will take 

into account the slope between these two points and slope between these two points.  
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So when we go in the next slides we will discuss some improvements to this particular thing 

But its important to know that it is not just equating directly to the left hand side itself or right 

hand side itself. But we are going to talk about the slope of the thing.  
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So as you can see in the slide this is the second order approximation and when you look at it 

from a 2 Dimensional point of view.  
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So what we will have is in the case of the Godunov scheme you will have a Piece wise 

constant so the triangles will have values which are equal across all the sides based on values 

at the centre. So based on that each of the neighbouring triangles will have different constant 

values. So a slight improvement to that will be the peice wise linear approximation where you 

will have values that will take into account the slopes. So you see that it is having a slope 

function within each of the domains and the each of the control volumes. And in 1D it will be 

simply a line instead of a plane. 

So here we see that both Godunov scheme and also the MUSCL scheme they are quite good 

for computational fluid and a mix where they have quite a lot of instability. So in a way 

having a discipation what I mean by discipation you will come to know in the next slides. So 

in a way when the wave decase in its amplitude due to an inaccuracy that is coming from 

computation of the flux function it is good for them. And that works very fine when they are 

using computational fluid dynamics problems. But in our case the solution does not go into 

instability naturally. So numerical solutions become unstable but the physical solution itself 

is not like that so what happens is having any amount of dissipation or in accuracy that is 

coming from our way of computing the fluxes should be avoided. So numerical in accuracy 

or instability should be avoided. 
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So as we said Godunov scheme is highly dissipative for CEM. We donot use that for any 

particular application. MUSCL scheme is an improvement definitely it has certain 

improvement but it is till dissipative. If you ask somebody who is working with fluid 

dynamics they will say that well we are happy with it but people with electromagnetics as I 

mentioned they are not happy with it. So we have to see how we can improve it.  

So what I meant by dissipation is let us say you have an wave that is going in X direction. So 

the line which is in red is actually the exact value. The amplitude of the wave does not 

change should not change. But what happens is when you are trying to use numerical 

methods due to various reasons what we discussed just now the flux function computed is not 

accurate so it reads to slow DK in the amplitude. This is what is called as Dissipation, to be 

more specific we call it numerical dissipation. 

So that being said we are now going to discuss what are the different ways in which we can 

improve this. We tried few techniques they work on a case by case basis. It is good to know 

them it is good to know where to apply when to apply them. In that sense we get an overview 

of various capabilities. Both the pros and cons of Finite Volume Time domain method.  
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So one of the initial schemes I will look inti is the centered flux scheme. So its also called as 

Flux Averaging scheme. So the centered flux scheme or Flux Averaging scheme depending 

on who you are speaking to they mean the same thing and you will see how they are done in 

the case of electromagentic problem. 
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So the second one is truly Upwind scheme, the truly upwind scheme is basically mimicing 

more or less what MUSCL scheme the Monotonic Upwind scheme is doing but in much 

more structured way it looks into the geometrical parameters of a particular control volume 

and takes into account certain aspects. 
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And the last one is the Geometrical reconstruction scheme which is a little bit more of an 

improvement compared to the Truly Upwind scheme.   
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So a note I have to mention here is depending upon which ever scheme you are using the pros 

and cons are one is to look into the numerical accuracy that scheme brings but also we have 

to pay attention to the computational cost because we do not need to do too much 

computation in order to get a better approximation. So there is always a kind of a what should 

I say trade of compared to what kind of numerical method we use to compute the flux versus 

how much smaller we are go in terms of discretisation and also the better approximations we 

can get through those new functions. 
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So with that being said in the next parts we will see into how we are going to compute the 

centered flux truly upwind scheme geometrical reconstruction scheme. So with that I will end 

this module. 


