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Method of Moment

So in todays module we are going to look into one of the most important method and for the
good reason the method is also called as mother of all methods. We have discussed some of
the theoretical background related to method of moments.
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While we discussed the variational method and also Finite element methods. With that being
said they are quite prepared to look into the basic idea behind method of moments. At large
we will start looking into some of the motivation behind it historical aspect as well, and take

you through some examples.
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so in todays module we will start with the background as usual. We will look into the
theoretical aspect of the method of moments and we will look into some of the applications.
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With that let us start with the background itself.
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Digital Computer Solutions of the Rigorous Equations
for Scattering Problems

JACK H. RICHMOND, SENIOR MEMBER, IEEE

Abstract—A survey of recently developed techniques for solving
the that arise in problems is

These methods generate a system of linear equations for the un-
known current density by enforcing the boundary conditions at dis-
crete points in the scattering body or on its surface. This approach
shows promise of leading to & systematic solution for a dielectric or
conducting body of arbitrary size and shape.

The relative merits of the linear-equation solution and the varia-
tional solutions are discussed and numerical results, obtained by
these two methods, are presented for straight wires of finite length.

‘The computation effort required with the linear-equation solution
can be reduced by expanding the current distribution in a series of
modes of the proper type, by making a change of variables for in-
tegration, and by employing interpolation formulas.

Solutions are readily obtained for a scattering body placed in an
incident pl field or in the of a source.
are included for both cases, using a straight wire of finite length as
the scattering body.

The jon of these to
body is illustrated with dielectric rods of finite length.

by a dielectric

I. INTRODUCTION
IGOROUS SOLUTIONS exist for plane-wave
_s=scattering by the perfectly conducting plane, cir-
cylinder [1], elliptic cylinder [2], sphere
prolate spheroid [4]. These solutions are
v the method of separation of variables. The

wab¥eGfivion, given by
VY + kY =0

order of one wavelength in maximum diameter. Large
scatterers are handled with the aid of physical optics,
geometric optics, and the geometrical theory of diffrac-
tion. These optical solutions provide reliable data only
when the scatterer has a diameter or width which is
large in comparison with the wavelength. Complications
arise when a portion of the surface is concave as, for
example, with the hollow hemisphere. Furthermore, the
solution for each new scattering shape requires a great
deal of thought and ingenuity.

In the past few years, with the widespread availability
of high-speed digital computers, attention has been
given to a distinct approach to the scattering problem.
First, a system of linear equations is obtained by en-
forcing the boundary conditions at many points within
the scatterer or on its surface. Next, with the aid of a
digital computer, this system of equations is solved to
determine the current distribution on the surface or the

fficients in the mode ion for the scattered field.
Finally, one computes the distant scattering pattern.

This linear-equation technique is valid for scatterers
of any convex or concave shape, and the exact solution
can be approached simply by enforcing the boundary
conditions at a sufficiently large number of points. The
computation time is least for small scatterers (in the
Rayleigh region) but it is reasonable even for bodies of

So the method of moments actually started in 1965 by J.H. Richmond who actually
introduced this method to Engineering Electromagnetics community at large mainly for
catering problems. With that being said the problems what he approached is mainly looking
at scattering applications. And later on couple of years later it was actually Harington who
introduced the method to a wider applications like antennas and various applications in
engineering. And he popularized the method further the introduced various mathematical
aspect using simple example, so his publications both the books and also the transaction
papers which he introduced method of moments are even today the most important references
for method of moments.
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With that being said, there is similarity to Galerkin method or the Finite element approach

which we discussed, for example we will see here in the Galerkin method we are basically



going from a linear partial differential equation to a matrix equation. In the case of method of
moments we are going to start with a integral equation not the partial differential equation
like in the case of Galerkin method. So we are going to start with the integral equation, and
we are going to use certain PEC approximation on the boundary conditions. Perfect Electric
conductor approximation.
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And also the entire approach is based on currents so what we in essence get is similar set of
matrix equation but in the case of the method of moments what you get is basically the
impedance matrix and the current vector and the voltage vector. This is basically kind of
Ohms law, where you have the r represented by the matrix here the | represented by the
vector here, and voltage represented by the vector on the right hand side. So in a sense it is a
very similar approach to the Galerkin method.
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but the theory is a little bit different. So we will start with the theoretical concept itself.
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MAXWELL’S EQUATIONS

Time-domain Maxwell’s egns:
VXE=-9,B V:D=0

VxH=0D+J V:-B=0
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As usual we will start with the time domain Maxwell equation represented by curl of E and H
field. And similarly we should also have the diversions condition. If we cannot define the
diversions condition, it is difficult to uniquely compute the E and H, so both the curl
formation and the diversions equations are important for us to uniquely compute in addition
to the boundary conditions as well. So we are not discussing here the boundary conditions. So

this is a time domain Maxwell equation.
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MAXWELL’S EQUATIONS

Time-domain Maxwell’s eqns:

VXE=-90,B V.-D=0
VxH=0D-+J V.-B=0
L3
Frequency-domain Maxwell's eqns: J; « —jw

I'-:}!f:‘?'tir.

/
and when we go into the frequency domain we can substitute for the time derivative minus j
omega. Please be aware that some literature use j omega. If you use the convention of j
omega instead of minus j omega your signs here has to change accordingly. But the general
formulation is pretty straight forward.
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MAXWELL’S EQUATIONS

Time-domain Maxwell’s egns:

VXE=-9,B V:D=0
VxH=0D+J V-B=0
Frequency-domain Maxwell's eqns: 0, « —jw
V x E = jwuH V-D=0

k} VxH=—jweE+J V-B=0
)I)!',‘.—‘.’F..
So when you go for the frequency domain formulation so the minus j omega is getting

substituted for dt and the equations are getting transformed accordingly and the diversions
equations remain the same.
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MAGNETIC VECTOR POTENTIAL

Substituting constitutive relations

V.- (E)=0
LV'(#H)=OJ
As V- (uH) =0,

®

NPTEL

Prof. K. Sankaran

When we can substitute the constitutive relationships basically the constitutive relationships
are the relationships between D and E, and D and H. When we substitute them the diversions
conditions become like this. What we essentially have is diversions of Mu of H is equal to 0.
So we take that one and we say when the diversions of something is equal to 0 that means
that something is actually a curl of some other thing. So that is the basic mathematical
identity.
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So when we say the diversions of (Mu H) is equal to 0.What we are going to say is we are
going to say this MuH is actually curl of some other variable, and that other variable we call
it as A which is a vector. And this is nothing but the magnetic vector potential. Remember the
counter part of it in the case of electric will be the Electric Scalar Potential. As compare to

the Electric Scalar Potential which is very much a physical quantity which you can basically



mesher in laboratory experiments, magnetic vector potential is purely a mathematical
construct. It is a purely mathematical construct in the sense there is no physical counterpart
for it.
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MAGNETIC VECTOR POTENTIAL

Substituting constitutive relations

| V-(E)=0 |

V- (uH) = ’
As V: (uH) =0,

|BE=V xA |

where A is magnetic vector potential
{‘;&t a physical quantlty

So we do that mainly to do the analysis simple. So the magnetic scalar potential there is no
physical counterpart to it. So we will start with substituting this A into the first curl equation
what we had.
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So what we had is we had a curl equation that says the curl of E is going to be given by j
omega MuH. So what | am going to do here is | am going to take j omega Mu outside and for
H 1 am going to substitute curl of A divided by Mu). So once I do this what | am going to do
is I am going to bring them to the left hand side So curl of Eminus j omega curl of A equal to

0. So once | have this as you can see in the slide | am going to write this equation as Curl of



(E minus j omega A) equal to 0. So now we are going to look into another vector identity
when the curl of something is equal to 0 that means this something in going to be a gradient
of something. so in this case we take this gradient of Phi, which is the electric scalar potential
and by convention we use the minus sign. So this particular thing will be equal to this.
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So what we have got now is E minus j omega A equal to minus the gradient of electric scalar
potential. So what we can write down we can write it in the time domain form which will be
useful for us. So now what we will do is we need to find the way to solve the problem of
addressing more variables than the degrees of freedom. S somehow the mathematician use
this term called gauging. In this particular gauging is referred to Lorentz gauging named after
the great Dutch Physicist called Ludvik Lorentz. And the reason for doing that is to cope up
with a degrees of freedom of the variable itself. We are not going to go into the mathematics

of it but we will see how did we come to that Lorentz Gauge here?
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So what we have here is? We start with the basic Maxwell equation the curl of H is equal to
minus j omega Epsilon E plus J. So when we multiply Mu towards this entire equation, so
what we will get is, but we know for this one MuH is the curl of A. So curl of curl of A is
equal to minus j omega epsilon Mu E plus Mu J.
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So with this we are going to manipulate the equations further. So we will what we have got
now is Curl of A is equal to minus j omega Epsilon Mu e plus Mu J. What we will do is we
will substitute the value for E in this equation. We can transform this entire thing in the time
domain. So what we will get is curl of curl of A is equal to minus j omega will be dt so we
will get Mu Epsilon dt E plus Mu j and we know E equal to minus and we will have the value

of minus dt A. This we know we can substitute this value for this E here.
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So what we will get is curl of curl of A is equal to Mu J plus Epsilon Mu d t (minus gradient
of Phi minus d t A). This left hand side has a vector identity which is nothing but gradient of
the diversions of A minus the laplatian of A is equal to Mu J plus Epsilon Mu d t of this
particular variable here. So | can expand this inside term as follows. What | will get is Mu J
minus Epsilon Mu the gradient of time derivative of Phi minus Epsilon Mu d t square A. So
you can notice we have two terms we have 1 term the gradient of the diversions of A on the
left hand side and we have the gradient of the time derivative on the right hand side. So we
are going to bring them on one side and then rearrange the equation as follows.
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So what we have now is the gradient term diversions of A on one side plus Epsilon Mu d t by
the time derivative on the electric scalar potential. And the right hand term which is Mu J

minus Epsilon Mu d square t A. And then the Laplatian term from the right hand side which



is plus laplatian of A. So what you see here is the condition that will lead us to the Lorenz
Gauge. The Lorentz cage is nothing but this term we are setting it to 0, so the diversions of A
plus Epsilon Mu d t Phi is set to 0. So this is the Lorenz Gauge. And that is what you will see
in the equations to come. So when this is 0, so gradient of something O essentially you can
equate this to 0 and then you can compute the values accordingly and you are coping up with
certain degrees of freedom issues.
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LORENZ GAUGE CONDITION

More variables than DoFs, so “to fix the gauge”

let
From Lorenz
VA =jwpep {1  Gauge
condition
%)

So the idea behind the Lorenz Gauge is exactly that so what we have done now is the
derivation for Lorenz Gauge.
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So you can rearrange this term accordingly, What you will get is diversions of A is equal to

minus Epsilon Mu d t Phi and then you can substitute for d t as minus j omega and then

minus minus get cancelled you will get j omega Epsilon Mu Phi is the diversions of A. 15:17



The reason for doing this is also due to Lorenz Helmond’s theorem. Helmond’s theorem says
that its not enough to talk about only the cur | of defining the curl of A we need to also define
the diversions of A to uniquely find the value of A. So we have defined curl of A as Mu H
and now we have defined the diversions of A as j omega Epsilon Mu. So this is in fact the
necessity for us to mathematically compute the value of Mu of A so the background behind

Lorenz Gauge is something important. And that is what we have tried to explain you now.
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LORENZ GAUGE CONDITION

More variables than DoFs, so “to fix the gauge”

let
From Lorenz
VA = jwpep Gauge
condition

Substitute A into curl equation,
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So let us go into the method itself with the Lorentz Gauge. We are going to substitute the

value of A into the curl equation. So what you have got is the curl of A divided by Mu is
equal to minus j omega Epsilon E plus j.
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WAVE EQN USING POTENTIALS

For a homogeneous medium,
V(V-A) - V?A = —jwucE + uJ

Put E = /~‘—‘A VY«
V(V-A) V2A = —jwue(jwA — V) + ud

VA + W ueA — V(- jwpep + V- A) = —pd
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And for homogeneous equation what we have got is putting e equal to j omega A minus the
gradient of Phi. You will get the value accordingly, so what I am going to do is | am going to
substitute the value for E here and get an expression for curl of curl of A. This is curl of curl
of A, I am expanding curl of curl of A using the vector identity which is the gradient of
diversions of A minus Laplatian of A is equal to minus j omega Mu Epsilon multiplied by (j
omega A minus gradient of Phi) which is the value of e plus Mu J . So rearranging the terms
what | have got is an expression for the laplatian of A plus omega square Mu epsilon A minus
| am taking out the gradient term outside like I did before. That is equal to minus MuJ.
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WAVE EQN USING POTENTIALS

We have V - A = jwuep

So we have the Lorenz Gauge here.
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WAVE EQN USING POTENTIALS

For a homogeneous medium,
V(V-A) - V?A = —jwueE + uJ

Put E = /~‘—‘A VY«
V(V-A) V2A = —jwue(jwA — V) + ud
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So essentially what | am going to do is | am going to substitute the value for this Lorenz
Gauge and when | substitute this, this particular term will disappear because we will get a
value minus j omega Mu Epsilon Phi plus j omega Mu epsilon Phi, so this term will
disappear, what I will get is a Laplatian of A plus omega square Mu Epsilon A is equal to
minus Mu J.
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WAVE EQN USING POTENTIALS

We have V - A = jwueyp

V2A +w?ueA = —ud
Recognizing /3% = w? 1

ViAW B°A =—-ud

_Vector wave equation that relates magnetic
[¥jctor potential and current

And that is what | have written here. And this is a wave equation using potentials so what |
have used here is directly the magnetic vector potential and you can substitute the value
omega square Mu Epsilon is equal to beta square. Once you do that what you get is the same
equation written in terms of Beta and this is the vector wave equation that relates magnetic
vector potential to the current. You have seen a similar equation related to the electric scalar

potential but this is the magnetic scalar potential counterpart.
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Z-AXIS THIN WIRE

In matrix form,
A, A, Jz

V2IA, | +8% |4, | =—-u

A. A

For a z-axis oriented thin wire,

Ay Ay 0
VZ2I|A,| +8% A, ==u]|0
A, A, J.

5) e

And in matrix form when A is a vector with Ax Ay and Az as its component similarly J is a
vector using Jx Jy and Jz as its component we can write this in the matrix form. For a simple
case where we have a z oriented antenna where the antenna is approximated as a thin wire
you can assume that the current density is only Jz and Jx and Jy are 0. What you will get is an
expression for the thin wire antenna as follows.
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REVISED EQUATIONS

Lorentz gauge condition becomes,

() /
V. A = jwuep ("'
Jz

= juwpeg

Electric scalar potential reduces to

E-juA=-Vo @ B, —jwd; =22
Uz
Combining the two
1 (&4,
O E,=—- <(—0f— +,u‘/1f.4:>
7 Jwpue \ 0z*
i/r EL

This expression essentially demands our Ax and Ay to become 0. And using the Lorenz
Gauge what we get is basically the formulation that can be written of this form and the
Electric Scalar Potential reduces to Ez minus jomega Az equal to minus dPhi by dz. There is
only variation in the z direction and combining both this equation and this equation you

essentially get the expression for Ez using only the magnetic vector potential. And that is the



reason why we started with the magnetic vector potential you wanted to compute the value of
the electric field as a function of the magnetic vector potential.
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And the idea now is suppose that you have a simple antenna which is a very very thin wire
antenna. And | am going to zoom it to show its cross section. The cross section here is let us
say 2A and this 2A is very very very small compared to the wavelength. And now suppose
that this antenna is oriented in the z axis so this is the z direction we can assume this antenna
is decomposed into many small identical elements so let us say we are splitting it into small
small elements. And inside these elements there are individual sources that we are going to
talk about.

So what we are interested is we are going to find the value of a field at a point let us say r due
to the location of some charges at r prime. So in other words what we are looking at is the
response of certain field due to the source at certain location is represented using a function
called as the Green's function. So Green's function is nothing but a response function which
we are going to compute due to certain source at certain location. And assuming that the
distance the vector r its magnitude is given by r prime minus r and we are going to compute
the value of the field at this observation point. So this is the observation point and this is the
source location. So what we are going to do now is basically compute the value of the field at

this point due to this one.
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GREEN’S FUNCTION

Suppose a device can be decomposed into
many identical small elements

Overall solution is superimposition of response
of all tiny elements
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Essentially this is the idea behind the Green's function. And what we will do is the overall
solution due to this entire antenna is going to be
(Refer Slide Time: 23:03)

The superposition of this individual elements. So what | will do is basically compute at this
point due to the super position of all these points. So you get the idea so we will use this
principle to compute the value of the response the overall response.
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GREEN’S FUNCTION

Suppose a device can be decomposed into
many identical small elements

Overall solution is superimposition of response
of all tiny elements

Response of one of these tiny elements is called
Green's function

{f@/erall solution by integrating Green’s function
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And the individual response of the tiny elements are the Green's function and the overall
solution is going to be the integration of the Green's function itself.
So at this point we will stop and in the next module we will come and compute the value of

the Green's function for this test case and take it from there on until then Good Bye!



