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Method of Moment 

So in todays module we are going to look into one of the most important method and for the 

good reason the method is also called as mother of all methods. We have discussed some of 

the theoretical background related to method of moments. 
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While we discussed the variational method and also Finite element methods. With that being 

said they are quite prepared to look into the basic idea behind method of moments. At large 

we will start looking into some of the motivation behind it historical aspect as well, and take 

you through some examples.  
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so in todays module we will start with the background as usual. We will look into the 

theoretical aspect of the method of moments and we will look into some of the applications.  

(Refer Slide Time: 01:10) 

 

With that let us start with the background itself.  
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So the method of moments actually started in 1965 by J.H. Richmond who actually 

introduced this method to Engineering Electromagnetics community at large mainly for 

catering problems. With that being said the problems what he approached is mainly looking 

at scattering applications. And later on couple of years later it was actually Harington who 

introduced the method to a wider applications like antennas and various applications in 

engineering. And he popularized the method further the introduced various mathematical 

aspect using simple example, so his publications both the books and also the transaction 

papers which he introduced method of moments are even today the most important references 

for method of moments.  
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With that being said, there is similarity to Galerkin method or the Finite element approach 

which we discussed, for example we will see here in the Galerkin method we are basically 



going from a linear partial differential equation to a matrix equation. In the case of method of 

moments we are going to start with a integral equation not the partial differential equation 

like in the case of Galerkin method. So we are going to start with the integral equation, and 

we are going to use certain PEC approximation on the boundary conditions. Perfect Electric 

conductor approximation.  
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And also the entire approach is based on currents so what we in essence get is similar set of 

matrix equation but in the case of the method of moments what you get is basically the 

impedance matrix and the current vector and the voltage vector. This is basically kind of 

Ohms law, where you have the r represented by the matrix here the I represented by the 

vector here, and voltage represented by the vector on the right hand side. So in a sense it is a 

very similar approach to the Galerkin method.  
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but the theory is a little bit different. So we will start with the theoretical concept itself. 
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As usual we will start with the time domain Maxwell equation represented by curl of E and H 

field. And similarly we should also have the diversions condition. If we cannot define the 

diversions condition, it is difficult to uniquely compute the E and H, so both the curl 

formation and the diversions equations are important for us to uniquely compute in addition 

to the boundary conditions as well. So we are not discussing here the boundary conditions. So 

this is a time domain Maxwell equation. 
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 and when we go into the frequency domain we can substitute for the time derivative minus j 

omega. Please be aware that some literature use j omega. If you use the convention of j 

omega instead of minus j omega your signs here has to change accordingly. But the general 

formulation is pretty straight forward. 
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So when you go for the frequency domain formulation so the minus j omega is getting 

substituted for dt and the equations are getting transformed accordingly and the diversions 

equations remain the same.  
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When we can substitute the constitutive relationships basically the constitutive relationships 

are the relationships between D and E, and D and H. When we substitute them the diversions 

conditions become like this. What we essentially have is diversions of Mu of H is equal to 0. 

So we take that one and we say when the diversions of something is equal to 0 that means 

that something is actually a curl of some other thing. So that is the basic mathematical 

identity.  
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So when we say the diversions of (Mu H) is equal to 0.What we are going to say is we are 

going to say this MuH is actually curl of some other variable, and that other variable we call 

it as A which is a vector. And this is nothing but the magnetic vector potential. Remember the 

counter part of it in the case of electric will be the Electric Scalar Potential. As compare to 

the Electric Scalar Potential which is very much a physical quantity which you can basically 



mesher in laboratory experiments, magnetic vector potential is purely a mathematical 

construct. It is a purely mathematical construct in the sense there is no physical counterpart 

for it. 
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So we do that mainly to do the analysis simple. So the magnetic scalar potential there is no 

physical counterpart to it. So we will start with substituting this A into the first curl equation 

what we had.  
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So what we had is we had a curl equation that says the curl of E is going to be given by j 

omega MuH. So what I am going to do here is I am going to take j omega Mu outside and for 

H I am going to substitute curl of A divided by Mu). So once I do this what I am going to do 

is I am going to bring them to the left hand side So curl of Eminus j omega curl of A equal to 

0. So once I have this as you can see in the slide I am going to write this equation as Curl of 



(E minus j omega A) equal to 0. So now we are going to look into another vector identity 

when the curl of something is equal to 0 that means this something in going to be a gradient 

of something. so in this case we take this gradient of Phi, which is the electric scalar potential 

and by convention we use the minus sign. So this particular thing will be equal to this. 
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So what we have got now is E minus j omega A equal to minus the gradient of electric scalar 

potential. So what we can write down we can write it in the time domain form which will be 

useful for us. So now what we will do is we need to find the way to solve the problem of 

addressing more variables than the degrees of freedom. S somehow the mathematician use 

this term called gauging. In this particular gauging is referred to Lorentz gauging named after 

the great Dutch Physicist called Ludvik Lorentz. And the reason for doing that is to cope up 

with a degrees of freedom of the variable itself. We are not going to go into the mathematics 

of it but we will see how did we come to that Lorentz Gauge here? 
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So what we have here is? We start with the basic Maxwell equation the curl of H is equal to 

minus j omega Epsilon E plus J. So when we multiply Mu towards this entire equation, so 

what we will get is, but we know for this one MuH is the curl of A. So curl of curl of A is 

equal to minus j omega epsilon Mu E plus Mu J.  
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So with this we are going to manipulate the equations further. So we will what we have got 

now is Curl of A is equal to minus j omega Epsilon Mu e plus Mu J. What we will do is we 

will substitute the value for E in this equation. We can transform this entire thing in the time 

domain. So what we will get is curl of curl of A is equal to minus j omega will be dt so we 

will get Mu Epsilon dt E plus Mu j and we know E equal to minus and we will have the value 

of minus dt A. This we know we can substitute this value for this E here.  
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So what we will get is curl of curl of A is equal to Mu J plus Epsilon Mu d t (minus gradient 

of Phi minus d t A). This left hand side has a vector identity which is nothing but gradient of 

the diversions of A minus the laplatian of A is equal to Mu J plus Epsilon Mu d t of this 

particular variable here. So I can expand this inside term as follows. What I will get is Mu J 

minus Epsilon Mu the gradient of time derivative of Phi minus Epsilon Mu d t square A. So 

you can notice we have two terms we have 1 term the gradient of the diversions of A on the 

left hand side and we have the gradient of the time derivative on the right hand side. So we 

are going to bring them on one side and then rearrange the equation as follows. 
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So what we have now is the gradient term diversions of A on one side plus Epsilon Mu d t by 

the time derivative on the electric scalar potential. And the right hand term which is Mu J 

minus Epsilon Mu d square t A. And then the Laplatian term from the right hand side which 



is plus laplatian of A. So what you see here is the condition that will lead us to the Lorenz 

Gauge. The Lorentz cage is nothing but this term we are setting it to 0, so the diversions of A 

plus Epsilon Mu d t Phi is set to 0. So this is the Lorenz Gauge. And that is what you will see 

in the equations to come. So when this is 0, so gradient of something 0 essentially you can 

equate this to 0 and then you can compute the values accordingly and you are coping up with 

certain degrees of freedom issues. 
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So the idea behind the Lorenz Gauge is exactly that so what we have done now is the 

derivation for Lorenz Gauge. 
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So you can rearrange this term accordingly, What you will get is diversions of A is equal to 

minus Epsilon Mu d t Phi and then you can substitute for d t as minus j omega and then 

minus minus get cancelled you will get j omega Epsilon Mu Phi is the diversions of A. 15:17 



The reason for doing this is also due to Lorenz Helmond’s theorem. Helmond’s theorem says 

that its not enough to talk about only the cur l of defining the curl of A we need to also define 

the diversions of A to uniquely find the value of A. So we have defined curl of A as Mu H 

and now we have defined the diversions of A as j omega Epsilon Mu. So this is in fact the 

necessity for us to mathematically compute the value of Mu of A so the background behind 

Lorenz Gauge is something important. And that is what we have tried to explain you now. 
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So let us go into the method itself with the Lorentz Gauge. We are going to substitute the 

value of A into the curl equation. So what you have got is the curl of A divided by Mu is 

equal to minus j omega Epsilon E plus j. 
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And for homogeneous equation what we have got is putting e equal to j omega A minus the 

gradient of Phi. You will get the value accordingly, so what I am going to do is I am going to 

substitute the value for E here and get an expression for curl of curl of A. This is curl of curl 

of A, I am expanding curl of curl of A using the vector identity which is the gradient of 

diversions of A minus Laplatian of A is equal to minus j omega Mu Epsilon multiplied by (j 

omega A minus gradient of Phi) which is the value of e plus Mu J . So rearranging the terms 

what I have got is an expression for the laplatian of A plus omega square Mu epsilon A minus 

I am taking out the gradient term outside like I did before. That is equal to minus MuJ. 

(Refer Slide Time: 17:21) 

 

So we have the Lorenz Gauge here.  
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So essentially what I am going to do is I am going to substitute the value for this Lorenz 

Gauge and when I substitute this, this particular term will disappear because we will get a 

value minus j omega Mu Epsilon Phi plus j omega Mu epsilon Phi, so this term will 

disappear, what I will get is a Laplatian of A plus omega square Mu Epsilon A is equal to 

minus Mu J. 
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And that is what I have written here. And this is a wave equation using potentials so what I 

have used here is directly the magnetic vector potential and you can substitute the value 

omega square Mu Epsilon is equal to beta square. Once you do that what you get is the same 

equation written in terms of Beta and this is the vector wave equation that relates magnetic 

vector potential to the current. You have seen a similar equation related to the electric scalar 

potential but this is the magnetic scalar potential counterpart. 
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And in matrix form when A is a vector with Ax Ay and Az as its component similarly J is a 

vector using Jx Jy and Jz as its component we can write this in the matrix form. For a simple 

case where we have a z oriented antenna where the antenna is approximated as a thin wire 

you can assume that the current density is only Jz and Jx and Jy are 0. What you will get is an 

expression for the thin wire antenna as follows. 
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This expression essentially demands our Ax and Ay to become 0. And using the Lorenz 

Gauge what we get is basically the formulation that can be written of this form and the 

Electric Scalar Potential reduces to Ez minus jomega Az equal to minus dPhi by dz. There is 

only variation in the z direction and combining both this equation and this equation you 

essentially get the expression for Ez using only the magnetic vector potential. And that is the 



reason why we started with the magnetic vector potential you wanted to compute the value of 

the electric field as a function of the magnetic vector potential. 
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And the idea now is suppose that you have a simple antenna which is a very very thin wire 

antenna. And I am going to zoom it to show its cross section. The cross section here is let us 

say 2A and this 2A is very very very small compared to the wavelength. And now suppose 

that this antenna is oriented in the z axis so this is the z direction we can assume this antenna 

is decomposed into many small identical elements so let us say we are splitting it into small 

small elements. And inside these elements there are individual sources that we are going to 

talk about.  

So what we are interested is we are going to find the value of a field at a point let us say r due 

to the location of some charges at r prime. So in other words what we are looking at is the 

response of certain field due to the source at certain location is represented using a function 

called as the Green's function. So Green's function is nothing but a response function which 

we are going to compute due to certain source at certain location. And assuming that the 

distance the vector r its magnitude is given by r prime minus r and we are going to compute 

the value of the field at this observation point. So this is the observation point and this is the 

source location. So what we are going to do now is basically compute the value of the field at 

this point due to this one.  
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Essentially this is the idea behind the Green's function. And what we will do is the overall 

solution due to this entire antenna is going to be  
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The superposition of this individual elements. So what I will do is basically compute at this 

point due to the super position of all these points. So you get the idea so we will use this 

principle to compute the value of the response the overall response.  
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And the individual response of the tiny elements are the Green's function and the overall 

solution is going to be the integration of the Green's function itself.  

So at this point we will stop and in the next module we will come and compute the value of 

the Green's function for this test case and take it from there on until then Good Bye! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


