
Computational Electromagnetics and Applications

Professor Krsih Sankaran

Indian Institute of Technology Bombay

Exercise No 11

Finite Element Method -I

Hello! So today we are going to look into a very interesting way to solve a simple simple

problems like capacitor problem. So we will look into Finite element method based approach

how to use Finite element to solve a very simple capacitor problem, which is a Laplace

problem.

(Refer Slide Time: 00:35)

So let us look into the geometry of the problem it is a Laplace equation. And in two

dimension what we are interested is Doe square u by Doe x square plus Doe square Phi by

Doe y square is equal to 0 and with certain boundary conditions that are given. So let us look

at a standard capacitor a parallel plate capacitor.

(Refer Slide Time: 01:03)

So we have a top capacitor plate and a bottom capacitor plate and there is a potential that is

applied here. So let us say Phi is equal to 1 volt and there is a bottom potential that is given

Phi equal to 0 volt. So we are going to discretize it using triangular discretization. So let us

look at how the triangular grid is going to look like

So for example we are interested in using unstructured grid. So the grid is going to be very

irregular. So some places you have very fine cells in some places you have very coarse cells

and the cell size is going to depend on the gridding or the meshing software. And this is one

of the things that we should be very careful. For example here we have a triangle that is very

very long in the sides. And there is another triangle which is symmetric with one or two sides

whereas these triangles in the middle are very very fine.

So if you are having a mesh generator and that is not going to be very accurate so your

problem should be still run on such outputs of those mesh generators. So we want mesh

generator that is going to be very general we cannot rely on the mesh generator accuracy

itself what we can do is we can refine the grid but we do not know the quality of the grid that

can be produced or that will be produced by any mesh generator.

With that being said the program that you are going to use or going to apply for solving such

problem should be able to solve the problem using any mesh. Of course we need to look into

the numerical accuracy that we need. If we need better accuracy we have to refine the grid.

But what I am trying to say is if your program is able to run on any general grid. For example

on any general triangular grid it does not need to be uniform or regular. And that is a good

way to start programming. If your program is dependent on the regularity or the uniformity of

the grid than you are very specific and you are not able to solve it using a generalized mesh

that can come out of any mesh generator. So when I say generalized mesh what I am pointing

out here is generalized triangular grid. So once I know the shape of the grid I should be able

to run it. Not to put so much emphasis on the quality of the grid itself because as I said

sometimes you cannot control the quality of the meshing and this is mostly the case if you are

using any freely available tool. If you are using proprietary software or software that are

bought from companies there you are refinement possibilities where you can get better

accuracy and the better refinement is a feature that they sell for certain free.

But what we are using for most of this course is a freely available tool or inbuilt tools. So in

this case what we are using is a PDE tool box which is an inbuilt feature of the Matlab. And

we do not have much control on the way to make the grid we cannot force the grid to be

formed in certain way. Si in that case we should have a feature of programming it and able to

read any data.

(Refer Slide Time: 04:42)

So let us look at this problem. So what we have as a problem is represented here by this grid

so what I have done here is I have used the PDE tool box I can explain you how the PDE tool

box works.

(Refer Slide Time: 04:55)

So this is the geometry of the capacitor we have used the inbuilt feature of the PDE tool box.

(Refer Slide Time: 05:01)

What it does is it creates a model and it assigns certain model and it exports the model the

way we want. So let us run this one.

(Refer Slide Time: 05:09)

Let us say we want to see the result for a very very basic coarse discretization and we are

going to export this mesh.

(Refer Slide Time: 05:20)

So you go into mesh, export mesh.

(Refer Slide Time: 05:22)

To get the variable names as PET these are the points, edges and triangles we are exporting it

and once we have exported it. We can go into the workspace.

(Refer Slide Time: 05:50)

So we can save the workspace. We can give it the name.

(Refer Slide Time: 06:02)

And now let us go into the Matlab code itself. So the Matlab code we have used as a FEM

code which is able to solve the problem the Laplace problem using unstructured mesh.

(Refer Slide Time: 06:20)

And what it does is it basically reads the data from the PDE tool box and it sets certain

parameters for example number of nodes, number of elements, and number of edges. And

these are the values it reads from the output of the PDE tool box.

(Refer Slide Time: 06:40)

The first matrix what it creates is the P matrix, the E matrix is the second one and the T

matrix is the third one. So as I said the P matrix corresponds to the point matrix the various

points in the mesh. E matrix are the edges matrix.

(Refer Slide Time: 06:58)

And the T matrix correspond to the different triangles. And what is important to know is

there are 4 rows and n elements. So with the first three rows of the each column is

corresponding to the nodes of the different triangles for example each triangle is represented

as a i and the first three columns are the three columns taken in the anti clockwise. The fourth

row contains sub domain information if the domain is the main domain or part of the other

domain. In this case we do not have any sub domain so we do not need to worry about this.

(Refer Slide Time: 07:30)

And what it also does is it creates the C matrix. Which is the global coefficient matrix that we

will be using.

(Refer Slide Time: 07:40)

And initially what it does is it loads the mesh data. So it prints loading mesh data and it loads

the mesh data what we have stored. And it goes and assigns those T E and P matrix to various

parameters so A3 N elements are the number of elements basically these are the triangles and

the size of E will be the number of edges, number of nodes will be the size of P.

(Refer Slide Time: 08:15)

And it displays those values and what it does is it creates a matrix and defines that matrix has

a sparse matrix. The reason for doing that is to make the computation fast.

(Refer Slide Time: 08:28)

And it creates the source matrix or the source vector to be precise. So it creates the source

vector BJ and initializes it and it displays the computing element coefficient matrix.

(Refer Slide Time: 08:41)

So it goes into each of the elements.

(Refer Slide Time: 08:43)

And from each of the elements it computes the value of the elements delta. Delta is the area

of the each of the elements and it uses that value into the local matrix. And once the local

matrix c is created. It concatenates the local matrix to form the global coefficient matrix. And

that is what you see. You see the capital C is the global coefficient matrix and the c is the

local matrix.

(Refer Slide Time: 09:18)

And once it does that it applies the boundary condition as I said the boundary condition what

we are looking into is

(Refer Slide Time: 09:28)

As it is said in the initial sheet we have phi is equal to 1 on the top plate and Phi equal to 0 on

the bottom plate. And that is what you will see here.

(Refer Slide Time: 09: 38)

We are going to apply the boundary condition as v1 on the nodes of the top plate, so these are

nodes on the top plate.

(Refer Slide Time: 09: 51)

And we are going to set v2 for the bottom plate. And the value of v1 and v2 is given on the

top.

(Refer Slide Time: 10: 00)

v1 is the upper plate voltage so we can write them as the potential and the lower plate

potential. So these are all in volts.

(Refer Slide Time: 10: 18)

And this is applied in the boundary condition and we are going to solve the simultaneous

equation given by this expression. We are going to compute the various potential v and we

are going to invert the matrix c in order to get the result and BJ is the source matrix. And the

plotted and the computed value of the electric potential are plotted in the fig 1. So let us run

this code and see what is happening.

(Refer Slide Time: 10: 53)

We see that the potential is going to be 1 and the bottom plate is going to be 0 as we can see.

And there is a natural degradation there is a linear degradation from top plate to bottom plate.

Here there is an assumption on the left hand side and the right hand side. The assumption is

the fields are going to be following certain patterns as if the plate is infinitely long in this

direction and this direction. So it is going to have assuming that the top direction is y, the

horizontal direction is going to be x. It assumes that the plates are infinitely long in the x

direction. So the fields values here the normal component of the fields here are going to be

seen continuous. So you do not see any kind of deviation, if there all looking as if the plate is

infinitely long.

What is also important to know is once we refine the grid to the level what we want we can

get the accuracy what we want the way we want. We can go and refine the grid even further.

(Refer Slide Time: 12: 17)

For example we can go and run this geocapacitor PDE tool box one more time.

(Refer Slide Time: 12: 26)

And we can refine the grid even further

(Refer Slide Time: 12: 28)

For example if you see here I have refined it even further.

(Refer Slide Time: 12: 30)

This is the maximum refinement possible but once you refine it so much what is going to

happen is the time it takes for you to run the code is going to take longer. So this is the basic

discretization which we ran. And we can go and refine the grid even further.

(Refer Slide Time: 12: 50)

So for example in this case we can also do the same thing what we did before export the

mesh you can say ok, and we can exit.

(Refer Slide Time: 13: 13)

And what we can see is in the previous case when we did the computation we had 177 nodes

312 elements and 40 edges. But now we have refined it so much, we expect that the number

of nodes number of edges are going to be dramatically higher.

(Refer Slide Time: 13: 24)

So let us go and save this particular matrix data so we are going to save it once again same

name. So mesh data capacitor. Replace

(Refer Slide Time: 13: 47)

And now we are going to go and run the program one more time. So let us go and run the

program FEM unstructured grid one more time. And it is going to take a long time because

there are going to be so many elements. So let us run it.

(Refer Slide Time: 14: 06)

And as you can see the solution is going to take a long time. So it is very busy now it is

computing the element coefficient matrix.

 And as you can see compared to the last time it is going to have 640 earlier we had only 40

edges now we have 640 edges. This is a much finer discretization. So it is going to take a

very long time for us to get the result. What I wanted to show is in certain problems it does

not really matter how much cells you are going to have because the solution itself will be

symmetric and you can use the symmetry of the solution to get a better result in a quicker

way or in a very easy way. In this case I have done the problem so as to show you how one

can use PDE tool box and combine it with Finite element method and as I said this grid is

going to take such a long time it is still computing the coefficient matrix forming the global

coefficient matrix and once it is done it is going to show the result.

And let us see what is going to be the difference between a coarse grid what we had and a

very very very fine grid. And does it make sense.

And as I told you one of the thing that one has to learn during the process of this lecture is

how we can make a informed choice of the discretization the method that we are going to use

and the kind of resolution that we want.

(Refer Slide Time: 15: 38)

For example if you see this solution what we have got we did not gain anything that much if

you see the result what we have got here looks very similar to what we have got even before.

Because the problem itself is very symmetric and it is a straight forward problem there is not

much material discontinuity or material changes permittivity and permeability changes or

domain itself is not that complicated. So we are not gaining that much. So we will do yet

another problem using the same finite element method. And we will see how the

discretization going to improve our accuracy in that case.

So with that being said we will stop here. What we have seen is a very simple Laplace

problem. We have used an inbuilt mesh generator called as PDE toolbox and we have used

nodal based FEM method using unstructured grid to solve a very simple Laplace problem.

And we have seen how the accuracy is going to change whether it makes sense to go for a

finite grid or coarser grid so on and so forth. And as I told you in the next module in the next

exercises what we will see is a very different type of capacitor problem where refinement

helps us in gaining something. So that is the focus of the next module. See you in the next

module. Thank you!

