Computational Electromagnetics and Applications
Professor Krish Sankaran
Indian Institute of Technology Bombay
Lecture No. 22
Finite Element Method (FEM)

We will do some simple simulation on Matlab, how Poisson equation is going to pan out. We
did a lot of mathematics now but let us look into a practical way of solving this using Matlab.
(Refer Slide Time: 00:29)

B Ly Find Files J Insernt X Vil - . ~
- o ™ x w e 3 2 ‘T e
. Compare ~ GoTo » Commenmt 7/,

dpen Save . bl b 8 .4 Breakpoints Run Runand | . A
v - BHM - 54 find ~ Indent HETIE - v Advance

it NAVICATE L 1) BEALNOINTY BN
sson_Circular_Domain.m* distmesh2d.m +

%{

Title: 2D Finite Element Poisson Solver

Author: Prof. Krish Sankaran

Date: 22/10/2005

Updated: 10/03/2016 based on material from

www.particleincell.com

Poisson solver in a circular domain

Uxx + Uyy = =Sqrt (x *2 + y*2)

Analytical sglution isU=1-=x"2 =-y"2

Poisson's equation KU=F

"{gi;}ode does the following

§}gg_l: First it generates a triangular mesh over the r
So Matlab luckily has some of the inbuilt functions which gives you easy way to get certain
results of matrices manipulation. So | am going to use that to make things simple. But the
goal of this demonstration is to show how the entire field distribution whether it is potential
or it is electric field its going to change as a function of the discretization itself. So with that
in goal let us look into the solver which | have got. So it is based on the material which is
freely available online particle in sell so | have a Poisson solver on circular domain and the
Poisson equation is given as u xx plus u yy is equal to the square root of certain value. So the
Rho value which is nothing but surface charge density is going to depend on x and y. So that
is the idea and there is an analytical solution that one can derive for this but let us go into the

step one by one.

(Refer Slide Time: 01:32)

@ MATLAB Window Help = o Thu17:22 Q

@ (%) Editor - [Users/Krish/Desktop/liT-B Lectures/CEMA/FEM/Poisson Solver/Poisson Circular [
(o2 g kg W Ra het B B2 B bneseee

New Open Uy/Compare = gjCoTe > Comment % 2 20 roskpowts Mon Runand |4 Advance Runand

- - v P v M find v Indent u T - v Advance Time

e NAVICATE Lo - '!wmnl‘rii - llfl
Poisson_Circular_Domain.m* distmesh2d.m 1 +

10 Analytical solution is U = 1 = x*2 = y”*2

11

12 Poisson's equation KU=F

13

14 The code does the following

15 Step 1: First it generates a triangular mesh over the region

16 Step 2: Next it assembles the K matrix and F vector for Poisson'yq
‘17 Step 3: After that it sets the Dirichlet boundary conditions to 4
) 18 Step 4: It then solves Poisson's equation using the Matlab comma
19 Step 5: Finally it plots the results
- 20 L]
[21 %)
i 22
| 23 % [p,t,b] from distmesh tool

24 o % make sure your matlab path includes the directory where distme

~- {5

) script

So the Poisson equation is of the form k u is equal to F. Remember in our earlier example we
said it will be K Phi is equal to b. What the code actually does is first it generates a triangular
mesh over a region. And for this | am going to use the mesh generator which is called as the
dish mesh, so it is freely available online. So it is going to give us certain mesh which is
based on the amount what we are putting in.

(Refer Slide Time: 02:05)

& MATLAB Window Help

= q

o) 100% B

rs/Krish/Desktop/iT-B8 Lectures/CEMA/FEM/Poisson Solver/c

Thu17:23 Q

distmesh2

2k e | SR tert) B L) ~ £3 W T8 jmunsecion U
New Open Save UniCompacs. = | gjcoTo = | Comment, J. off i Breakpoints Run and | o Advance Runand
- - - ﬂ'". - Lafing v Indent u el |14 - s Time
e NAVICATE ot . BREACPOINTS, L
Poisson_Circular_Domain.m distmesh2d.m +
1 function [p,t)=distmesh2d(fd,fh,ho,bbox,pfix,varargin)
2 %DISTMESH2D 2-D Mesh Generator using Distance Functions.
3 % [P, T]=DISTMESH2D(FD, FH, H@; BBOX, PFIX, FPARAMS)
4 %
5 % P: Node positions (Nx2)
6 % T: Triangle indices (NTx3)
| 7 % FD: Distance function d(x,y)
8 % FH: Scaled edge length function h(x,y)
h 9 % HO: Initial edge length
10 % BBOX: Bounding box [xmin,ymin; xmax,ymax]
F 11 % PFIX: Fixed node positions (NFIXx2)
L 12 % FPARAMS : Additional parameters passed to FD and FH
i 13 %
. 14 % Example: (Uniform Mesh on Unit Circle)
% fd=@(p) sqrt(sum(p.”2,2))-1;
% [p,t)=distmesh2d(fd,@huniform,0.2, [-1,-1;1,1],());

So if | say my discretization is going to be H 0 H length is going to be certain number. So it
IS going to generate the edges of that length. And what is interesting here is | am going to
give also the starting and ending point so the bounding domain. So the bounding domain is
going to be the x minimum and why minimum and x max and y max. So once | give that it is

going to give me a domain with certain grids so let us see how it does using this example.

(Refer Slide Time: 02:39)

@ MATLAB Window Help = L Thu17:22 Q

® (%) Editor - [Users/Krish/Desktop/IIT-B Lectures/CEMA/FEM/Poisson Solver/Poisson Circular [

+ L Find Files < Insert - By~ \:;=1 2 % (2] Run section

New Open LnjCompare S | G C0TS = | o ikl Breakpoints Run Runand | o Advance Runand

- - v P v M find v Wuwu i - v Advance Time

e NAVICATE Lo 4!“'0!1“777 - llfl
Poisson_Circular_Domain.m* distmesh2d.m 1 +

10 Analytical solution is U = 1 = x*2 = y”*2

11

12 Poisson's equation KU=F

13

14 The code does the following

15 Step 1: First it generates a triangular mesh over the region

16 Step 2: Next it assembles the K matrix and F vector for Poisson'yq
‘17 Step 3: After that it sets the Dirichlet boundary conditions to 4
) 18 Step 4: It then solves Poisson's equation using the Matlab comma
19 Step 5: Finally it plots the results
- 20 L3
[21 %)
i 22
| 23 % [p,t,b] from distmesh tool

24 o % make sure your matlab path includes the directory where distme

~- {5

;) script

So first it generates the mesh and then it goes into the k matrix assembly remember |
explained you how the k matrix is done step by step. We take each of the local elements and
then we put them on the global matrix and we construct the entire matrix. So that is what we
are going to do here.

(Refer Slide Time: 03:00)

@ MATLAB Window Help =2 o) W0OXBP ThuiZ:23 Q
.0 8 ~
4 -+ 9 H L) Find Files < L nsert Ll fx g ‘;} > ﬁ Pjhinsection (7
~ New ‘Open Sy W COMPMe © GQjCoTo > Comment % 5 10 | ooakpolors | Mun Munand | Advance Runand
- - v ey him v A4 Find v ndent || o) g - v Advance Time
i NAVICATE Y BREALPOINTS L
Poisson_Circular_Domain.m d-slmuhzd.n; T - o
12 equation Ku=F
13
14 oes the following
15 rst it generates a triangular mesh over the region
16 xt it assembles the K matrix and F vector for Poisson's equation
17 ter that it sets the Dirichlet bounddry conditions to zero
18 then solves Poisson's equation using the Matlab command U = KF
‘19 nally it plots the results
) 20
21
- 22
| 23 from distmesh tool
[24 e your matlab path includes the directory where distmesh is instd
" 25
26 57X %% %% % %% % %% % % % %% % %% % %% %% % %% % %% e % B e % B % % %
script

And after that |1 am assigning certain boundary condition which is | am saying Dirichlet
boundary condition and | am assigning the value of potential unknown to be 0 and those
boundaries and then | am trying to solve the Poisson equation. So | am going to show you
how the domain itself is going to look like based on the input values I am giving here. So the
domain bounding values are here. The minimum values of x the minimum value of y, the

maximum value of x and maximum value of y. | make a functional stop here so that you can

see the simulation and the domain itself let us put point 8 and see how the discretization is
going to look like.
(Refer Slide Time: 03:44)

& MATLAB Window Help = Q0 o) 00XED Thu17:28 Q

-—
L N Figure 1
File Edit View Insert Tools Desktop Window Help

Vdde R SKO9QLALA- QA 08 @

k

/) dblock,r ‘Poisson_Circular_D{

£ dairclen 27 %Step 1
= ddiff:m| o9 R |
ellipse.
<) dellipse,
<] dellipse, 30 % fd=@(
«) dellipse. 31 % fh=@(
32 % (p,t)
Vorkspace 33 %dbstop

Area 35 - fd=@(p)

- 36 - [p,t)=d
Charg 37 - b=uniqu
" 38 - N=size(

=39~ T=size(

usy &

T —
%fstop;
L RCEHP4 . e

This is not a very good discretization the reason is | say the starting and ending point is
minimum value is minus 1 and the maximum value is 1. So inside a particular domain | can
have maximum only two cells because 0.8 plus 0.8 is going to be give me 1.6 and the domain
maximum limits is going to be 2. So it is not very good. So putting it 0.8 is going to be very
very coarse discretization.
(Refer Slide Time: 04:16)

@ MATLAB Window Help = o) 0OXEBD Thu17:26 Q

Solver/Pos

C Loy Find Files i+ Insert Fal v -3 [$S

/'.:,:;:r;‘ 2 3 'cm. S ‘/" zj el Ty 2 rense

J i3 = £
7 oundec " O St T L find v lndent || e it i fummd 4 Advanc
1 circumes 1=} - (R STRIE S "

COPYRIC i L NAVCATE ot REACPONTS (T
) dblock.r Poisson_Circular_Domain.m distmesh2d.m +
) deircles 29

2 ddiftm| 39 % fd=@(p) ddiff(drectangle(p,-1,1,-1,1),dcircle(p,0,0,0.5)

Jouips 31 % Th=@(p) 0.05+0.3xdcircle(p,0,0,0.5);
<) dellipse, 32 % [p,t]=distmesh2d(fd,fh,0.05,[-1,-1;1,1],[-1,-1;-1,1;1,-]
¢) dellipse; 33 %dbstop

134

fd=@(p) sqrt(sum(p.”2,2))-1;

-...mp.nu“ 35 -
|
Some & 36 - [p,tl=distmesh2d(fd,@huniform,0.5 (-1,-1;1,1],(]); % p lig

Area 37 - b=unique(boundedges(p,t)); % b lists the boundary edges uf
:’ 38 - N=size(p,1); % number of nodes, number of triangles
Charg 39 - T=size(t,1); % t lists triangles by 3 node numbers

- fstop;

% [K,F] = assemble(p,t) % K and F for any mesh of trianglg

L ACEP4 . script

So having 0.8 is not a good solution so | am going to refine the mesh by reducing the edge

length to 0.5, let me see how the domain is going to look like.

(Refer Slide Time: 04:30)

@ MATLAB Window Help = o) 0OXED Thu17:26 Q

eve Figure 1
File Edit View Insert Tools Desktop Window Help ~

NEdde h SSO9QRQALA- QA 08 e @

| circumes

COPYRIC
/) dblock,¢! | Poisson_Circular_ D¢
) deirclen 29
D adiftm | 39 % fd=@(
dell h
Joeipe 31 % Th=a(
<] dellipse, 32 % [p,t]
¢) dellipse. 33 %dbstop
34
35- fd=e(p)
Work
oAl 36~ [p,t)=d
Area 37 - b=uniqu
b 38- N=size(
charg |39~ T=size(
- 40
= 4% - fstop;

3 % (K,F] =98) roan S rianglq
FACHP4 .

You can see the length of the each of the edges is going to be approximately 0.5 and based on
that the dish mesh is going to give me domain. And of course what you also see is the domain
is no longer circular. In the initial case it was really bad. But here you see that it is confirming
more and more to the circular area. So what |1 am going to do is | am going to keep 0.5 as my
domain discretization maximum edge length and | am going to run the code without stopping
it and then see what will be the result of the simulation.

(Refer Slide Time: 05:07)

& MATLAB Window Help = 4 W) 00XE Thu17:22 Q
w (%) Editor - [Users/Krish/Desktop/liT-B Lectures/CEMA/FEM/Poisson Solver/Poisson Circular [
+ al Ly Find Files < . Insert - By - \:,__j [P “:_‘l (3] Run section
New Open Seye M COMONE © (jCoTo > Comment %o g i) | yroakpons | Bun/ Munand | Advance Runand
- - L L 4 find Indent LJ I - v Advance
e NAVICATE Lo v__-tMK)llll — L)
Poisson_Circular_Domain.m* distmesh2d.m = | + .
10 Analytical solution is U = 1 = x*2 = y"*2
11
12 Poisson's equation KU=F
13
14 The code does the following
15 Step 1: First it generates a triangular mesh over the region
‘16 Step 2: Next it assembles the K matrix and F vector for Poisson'
17 Step 3: After that it sets the Dirichlet boundary conditions to 1
) 18 Step 4: It then solves Poisson's equation using the Matlab commar
19 Step 5: Finally it plots the results
- 20 L)
[21 %)
i 22
423 % [p,t,b] from distmesh tool
24 7<% make sure your matlab path includes the directory where distmey
. “*
~ script

So basically I said | have defined the domain | am assigning the k matrix to be 0 initially and
| am going inside each of the triangular elements, each element at a time | go and load the
values one by one and then | compute the value finally and | know the integration | integrated

over each of the triangles to get the value of f which is on the right hand side

(Refer Slide Time: 05:34)

& MATLAB Window Help - - o) 100%BE Thu172:27 Q
onor - JUsers/Knish/Desktop)iT-8 Lectures/CEMA/EEM/Poisson Solver/Pois
v % 3
utrent Fol
/.“b"‘;". ‘“-‘ \J hj %":M"" = V;C;' =y o ?‘ ,' LJ.' = ‘:_:J M ‘:‘J k‘llﬂlk(
L pndBroh New Open save o COMOM T SAGoTo % B ypens Run Renand | Advanc
T Dou N el Pt SAfind v ledent] orf iy . v Advance
gy A T —
7+ dblock.r Poisson_Circular_Domain.m* distmesh2d.m +
2] deircles 76
“:‘Q’;:l"‘,"".‘ 77 - K(nodes,nodes)=K(nodes,nodes)+Ke; % add Ke to 9 entries of
<) dellipse, 78 = F(nodes)=F(nodes)+Fe; % add Fe to 3 components of load vec
<] dellipse, 79 — d % all T element matrices and vectors now assembled int
¢) dellipse; go
8 [Kb,Fb) = dirichlet(K,F,b) % assembled K was singular! K«
Vorkspace | 82 Implement Dirichlet boundary conditions U(b)=0 at nodes ir|
mes 183~ b,:)20; K(:,b)=0; F(b)=0; % put zeros in boundary rows/co
Area 84 - b,b)gspcyc(length(b),length(b)); % put I into boundary sut
:’ 85 - =K; Fb=F; % Stiffness matrix Kb (sparse format) and load
86
Charg
- 4 87 Solving for the vector U will produce U(b)=0 at boundary r
<188 - Kb\Fb; % The FEM approximation is U_1 phi_1 + ... + UN |
7 Ngg
0 Plot the FEM approximation U(x,y) with values U_1 to U_N 4
‘ ‘ G . P ‘ ? ‘ scnpt

And finally | am going to invert the matrix by solving this equation so initially it is going to
be k of u is equal to b and I can get the k inverse by this Matlab function. So let us run this
code and see how the result is going to look like.

(Refer Slide Time: 05:50)

€ MATLAB Window Help T o) 0OKEBD Thu17:28 Q

eve Figure 1
File Edit View Insert Tools Desktop Window Help -
Vdde h S\KSO9LL-QA 08 @

v % 0

EDITOR

urrent Fol

I Name & LW \3 H Q

L}
) bndproj, 1
'] boundec n:' o':" “." " =
] circumer - . o8
COPYRICERE S '™
/) dblock.r Poisson_Circular_D{ os P
) deircles 24 % make 4
<] ddiff.m 25 fe
dell 3
Jaelipse, 26 VRRANAY
«) dellipse, 27 %Step 1 °
¢) dellipse. 28 EXXXLRN | 0
' 29 - ™
Workspace | 39 % fd=@(o om
ame & 31 % fh=@(- i
Area 32 % [p,t]
H 33 %sdbstop % aor
34 ")
v o5 0 [T v

Charg {
. 35—~ fd=e(p)
=36~ [p,t)=d
Lol N3 ~ b=uniqu.
8 - N=s;ze(p, o

‘ ‘G.P‘ ? ' script

So what we have got is we have got a very very crude discretization and the maximum is at
the centre. The Rho maximum is at the centre and for the function what we have chosen the
value of Rho is going to change as a function of minus square root of x square plus y square
so it is going to be a circular charge variation and you have the eq potential lines which are

circular lines. That is what you see and that is how it should look.

(Refer Slide Time: 06:23)

@ MATLAB Window Help *® 4 o)) 0ONED Thu17:29 Q

v % 3
u Fol 5
B el G (3 g e mer W HG T EY 2 B s
’:Aibndpmj. Opelibrs Ly Compare v C4CoTo v Comment % g 'J ™ e al (4
e SCSRCIRC =T, R EOT, TN SIYTSIT S
! ol [T TNGATE T tacronTs | "

/) dblock,r Poisson_Circular_Domain.m* distmesh2d.m +
pdmtl'-ﬂﬂ %Step 1: First it generates a triangular mesh over the req
Y ::'l':"p',". 28 B A L R A
<) dellipse; 2
<) dellipse, 30 % fd=@(p) ddiff(drectangle(p,-1,1,-1,1),dcircle(p,0,0,0.5)
2) dellipse; 31 % fh=@(p) 0.05+0.3+dcircle(p,0,0,0.5);

.32 % [p,t)=distmesh2d(fd,fh,0.05,(-1,-1;1,1],(-1,-1;~-1,1;1,~1}
33 %dbstop

Vorkspace

hrln’c :D.‘ J34
Area 35 - fd=@(p) sqrt(sum(p.”2,2))=1;

g 36 - [p,t)=distmesh2d(fd,@huniform,0.3), [-1,-1;1,1],[1); % p lig
charg | 37— b=unique(boundedges(p,t)); % ty lists the boundary edges ug
- - 38 - N=size(p,1); % number of nodes, number of triangles

=39 - T=size(t,1); % t lists triangles by 3 node numbers
10
1 %fstop;
‘ ‘ G . P ‘ ? . senpt

So let us go to 0.3. So the maximum edge length is going to be 0.3 now. And | am running
the same program so you see the value is getting more and more finer you see the nuances of
the equipotential areas initially when we had 0.5 we did not see the green equipotential line
we start to see it now. So if | refine it even further let us say | am going to 0.2.

(Refer Slide Time: 07:00)

& MATLAB Window Help) o) WOXKEE Thu17:30 Q

eve = Figure 1
File Edit View Insert Tsols Desktop Window Help -

Ndds h SKSOV9QLALA-QA 08 @

J - .
Jeircumer

COPYRIC
/) dblock.r Poisson_Circular_D¢ o8
jJ deirclen 27 %Step 1 o oos
= ddiffm} 28 BN
ellipse, | 0z
+) dellipse, | A=
<) dellipse, 30 % fd=@(0
:.) dellipse, 31 % fh=@(
- 32 % (p,t] ** “
Vorkspace 3 %dbStop =
Name & 34 os
| Area 35 - fd=@(p) -
- 36- [p,t]=d -
Charg 37~ b=uniqu) o
. 38- N=size(
< T=size(
T —
%fstop;

“l ‘G.P‘ 2 I script

I might be able to see more refinement.

(Refer Slide Time: 07:09)

S MATLAB Window Help

)

o) WOXKED Thu17:30 Q

h/Desktop/IIT-B Lectures/CEMA/FEM/Poisson Solver

EQNor = /Users/Knis:

v ¥ 3 EDITOR

urrent Foli
B Namea g (T oy Loy Find Files (= ’ nsert L fxX ry v é;j (> ﬁ (3] Aunsed
T o e S i COSONR = L Ga To = Commem 26 g8 3l fun Runand
PP SCISCHSSESRE T, IR, N ST TE S S e =y
COPYRIE LU NAVCATE [| BRIAPOINTS L
/< dblock.¢ Poisson_Circular_Domain,m* distmesh2d.m +
“‘dmtlmz7 %Step 1: First it generates a triangular mesh over the req
3:::[""". 28 R e RS SR A A S
+) dellipse, 29
<) dellipse, 30 % fd=@(p) ddiff(drectangle(p,-1,1,-1,1),dcircle(p,0,0,0.5)

<) dellipse: 31 % fh=@(p) 0.05+0.3%dcircle(p,0,0,0.5);
.32 % [p,t)=distmesh2d(fd,fh, 0 s, (-1,-1;1,1), (-1,-1;-1,1;1,~}
oF 33 %dbstop =
‘.mhn.un 434 =
Area 35 - fd=@(p) sqrt(sum(p.”2,2))-1;
':’ 36 - [p,t)=distmesh2d(fd,@huniform,0.1, [-1,-1;1,1),(]); % p li{
Charg 37 - b=unique(boundedges(p,t)); % b lists the boundary edges ug
. N=size(p,1); % number of nodes, number of triangles
T=size(t,1); % t lists triangles by 3 node numbers

%sfstop;
LACEP4 S
And likewise | can go to 0.1 also.
(Refer Slide Time: 07:11)
& MATLAB Window Help = 0 o) WOXEB® Thu12:30 Q
L N) Figure 1
File Edit View Insert Tools Desktop Window Help »

VDdde h SKLO9QLL-QA 068 @

/] circumes

COPYRIC AVAVAVAVAVAYA

AVAY
os AVAVAVAVAVAVAVAVA'A

:.) dblock,r Poisson_Circular_D¢ TV, A""'A""" VAVAVAY,
<) deircle.n 27 %Step 1 > VAVAVAVAVAVAVAVAVAVAVAVAY, ™
) ddiff.m pereT e VAVAVAVAVAVAVAVAVAVAVAVAVLV
dellipse. oz NN NN NN NN SNNNININES
KX XA
= i \VAVAVAY TAVAY FAVA
<) dellipse; 39 % fd=a(¢ AVAVAVAVAVAVAVAVAVAVAVAVAVAV A
2] dellipse. 31 % fh=@(VAVAVAVAVAVAVAVAVAVAVAVAVAVAY
o2 AVAVAVAVAVAVAVAVAVAVAVAVAVAV..
32 % [p,t) "AYAVAVAVAVAVAVAVAVAVAVAVAV A ™ 004
33 %dbstop o4 7AVAVAVAVAVAVAVAVAVAVAVAVA™
Vorkspace "AVAYAVAVAVAVAVAVAVAVAVAY
ame 4 34 o8 AVAVAVAVAVAVAVAVAVAVA'
Area 35 = fd=@(p) uuv:nuv:wvr @
v \/\/\
s Ipis *
Charg 37~ b=uniqu " 0
" 38~ N=size(
- T=size(
T —
%fstop;

‘ ‘G.P‘ ? I script

So you are able to see the various accurate results for various discretization obviously the
more finer our element dimensions are going to be the domain is going to be accurately also
represented. So what we have demonstrated in this example is to get a physical sense of how
the potential fields are going to be and also how to do it in a simple way using Matlab. In the
beginning remember | said one thing is missing which is the domain approach of the
Maxwell equation itself.

So that is what we will focus in next part of this module. We will start with the Maxwell

equation itself and in time domain and we will model it for the finite element approach.

(Refer Slide Time: 08:00)

So let us start with the basic Maxwell equation itself which is given by the two curl
equations. The curl of E is equal to minus Mu d t H and the curl of H is equal to epsilond t E
plus J. So what we have said now we are going to start with these two curl equations. Now
obviously there are going to be the diversions conditions the diversions of B is equal to 0 and
the diversions of D is also we have set it 0.

(Refer Slide Time: 08:49)

And we can start manipulating the second equation, so let us say this is 1 this is 2. So our
approach is we are going to go for finite element time domain. So what we are going to do is
from 2 we have 1 by Epsilon curl of h minus dby dt of E is equal to J by epsilon so this is 3.
So I am going to multiply 3 by the curl.

(Refer Slide Time: 09:30)

So I am going to multiply equation 3 by curl. So curl of 1 by epsilon of H minus d dt curl of
E is equal to 1 by epsilon Curl of J.

So for two dimensional problems let us say we will start with a simplification that we are
only interested in the x y plane and your magnetic field is going to have only the z component
S0 it is going to be a transverse electric case. So we will reduce this entire equation into more
simplified form. So we will use the simplified equation so we are going from here to the form
that we have got for the transverse electric case. So this equation can be written using the
values of the curl. So | have the curl value which is here | am going to substitute it here and
write it in the value which is only in terms of H.

(Refer Slide Time: 00:52)

So what I will have is curl of 1 by Epsilon curl of H plus Mu d square dt of H plus Mu sigma
of E dt H is equal to 1 by Epsilon curl of J. So what | have done is | have used the value here

and | have exchanged the value of e using the expression which is here. And what | have also
done is | have made the right hand side as J and | have kept the source as the J function.
(Refer Slide Time: 11:48)

So what we have got is 1 by Epsilon r Epsilon 0 Del square H z minus sigma Mu r Mu 0
Epsilon r Epsilon 0 dt of H z minus Mu r Mu 0 d square h z equal to minus 1 by Epsilon r
Epsilon 0 (curl of J).

(Refer Slide Time: 12:30)

So this is a simple equation where the coefficients have to assigned so what we can write as
this is the second order equation in time. So what we see is the second order equation in time
so | can write it as some t matrix multiplied by let us say the second order equation in v plus
some B matrix multiplied by first order derivative of v with respect to t plus some G matrix
into v itself plus some forcing function which is F equal to 0. So this entire expression can be

written in this form where v is same coefficient vector. So what you see here is this p is
actually the coefficient vector for H z we are using this as a coefficient matrix.

So what you can see here is these are the values and F is going to be directly given for the
value of J. So J is the forcing function and for which you have F. So what we have written is
basically an equation which is second order in time derivative and we have written it in this
form obviously we have not said anything about T, B, G and F.

(Refer Slide Time: 14:07)

So we will see the value of T which is in this equation is going to be given by a second
surface integral so it is in two dimension so you have the x and y integral of Mu r by ¢ square
w i w jdxdy. So w i and w j are the weighting function in i and j. So in x and y direction
respectively. Similarly what we are going to have is we are going to have the value for B j
which is in this part is going to be the equation for this one which is given by the double
integral. So one for x and one for y it is going to be Mu r divided by C Square (2j omega c

plus alpha) w i w j dxdy. Similarly we can also have the expression for j so on and so forth.

(Refer Slide Time: 15:11)

So what we have done is we have basically given the expressions for individual components
of those matrices.
(Refer Slide Time: 15:20)

So the components are basically given from this particular equation and they are here.

(Refer Slide Time: 15:28)

There are some coefficients which we have used alpha which is equal to sigma divided by
epsilon r epsilon 0 we have used the terms ¢ which is the velocity of the wave and obviously
w iand w j are the 2 D basis functions which we have used.

(Refer Slide Time: 15:48)

So once we have these integrals we can compute the individual matrices for T, B G and F and
plug it in so you will have a simple form which is given here. One thing that is still not
complete is, we still have a second order derivative in time first order derivative in time. So
we need to find a way to manipulate them. So that is what we are going to do but for that we

are already in safe hands because,

(Refer Slide Time: 16:12)

differencing scheme

earlier lecture!

We have an expression for a particular function let us say a Phi is equal to,
(Refer Slide Time: 16:15)

So we are computing the value of the second order derivative based on this particular
expression. So what we have is for second order derivative Del t square so we are taking the
value that is on the forward and the reverse and the central point. This stencil is something

which we have already looked into in our earlier lecture on the finite difference.

(Refer Slide Time: 16:50)

So we can also see that we can write the first derivative of t is equal to 1 by 2 deltat [P (n
plus 1)minus P (n minus 1)] So what | have done is | have taken a central differencing
between [P ('n plus 1)minus P (n minus 1)] so that is why have 2t here. | can also do some
kind of in between waiting functions.

(Refer Slide Time: 17:20)

So | can say P (n) is equal to some value beta multiplied by P (n plus 1) plus (1 by 2 beta) p
(n) plus beta P (n minus 1). So what I have done is | have taken P (n plus 1) p (n) and P (n
minus 1) and | am using some functions of beta. In the earlier lectures we used the term r or
some of the ways in which we can compute r is also given by the PDE itself. One good
approach is we can choose beta is equal tol by 4 so this is a good choice for numerical

modelling. So if you choose Beta is equal to 1 by 4.

(Refer Slide Time: 18:23)

Our expression which is here should be changed into a simple more easily approachable form
S0 we are going to write it in a easier form as follows.
(Refer Slide Time: 18: 38)

So what we will have is [T] divided by delta t square plus [B] divided by 2 delta t plus [G]
divided by 4 the entire thing multiplied by p(n plus 1) is equal to (2[T] divided by delta t
square minus [G] divided by 2) multiplied by P (n)minus [T] divided by delta t square plus
[B] divided by 2delta t minus [G] divided by 4) into P (n minus 1) minus the forcing function
[F]. So this is nothing but what I have got in this equation. So | have taken this equation and |
have substituted the value of time stepping using the approach what | have explained in the
time stepping algorithm. So | have chosen beta is equal to 1 by 4.

And accordingly what I have got is an expression for the value of the update equation. So it is
logical to see wherever there are

(Refer Slide Time: 20 :30)

[T_))Q.r [8]4_{/!4—[‘1] 14 r[Fl:o

P = Coefficient Vector 7

[T) C 8) . La3) ptnt1) e
AC" ZAL’ lr M;\yw%
2 [TJ @7] ﬂ”')
7/

o e L4
- e L8] ?}’(m)

A 24t
[T] The value is the central differencing which is basically the second order derivative of t is

here. And then for B you have two T values and you have the value for G which is given by 1
by 4 and they are all multiplying on the time stepping n plus 1. So what you have got in the
left hand side of this equation is nothing but the update equation for n plus 1 th step based on
the values of P which is (n) and (n minus 1) steps. So it is an explicit model to compute the
value of the equation. Obviously there is some tradeoffs here you have to compute these
matrices [T], [B], [G] and [F] separately. But it is going to create a lot of computational effort
but this is the way you can model the finite element time domain for Maxwell equations.

We will look more into this in the exercises but at least now what you have got is a basic
understanding of how to get into the Maxwell equations in the finite element method for
explicit time stepping algorithm. We have done a lot of mathematics here in fact too much
mathematics it is good that you at least know step by step how the process of doing update
equations look like. 1 did not want to just stop at the point of saying that this is the update
equation you can just feed it into a Matlab code and do it.

Because the devil is always in the detail. So | wanted to give you step by step approach on get
into the point where you can use Matlab to compute obviously when you do coding yourself,
you will inevitably come into a lot of challenges where you have to find ways to do it. So
with that we have come to an end of this particular module and also the chapter of finite
element itself. We have looked into the variational method in general, we looked into
Rayleigh Ritz method we also looked into the method of weighted residuals and also into the
method of Galerkin and we also looked at various aspect of finding variational principle or

the action of a particular PDE and how to go backward to a PDE to action function. So in that

sense we have covered quite a bit of work on the variational method including finite element
approach. We have seen also some examples that can demonstrate how the method actually
can be executed using commercial packages like Matlab.

So with that being said | would like to thank you for listening to this module and we will look
into the method of moments and applications of method of moments in the next modules to

come. So thank you and see you in the next module. Bye Bye!

