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Boundary Conditions 

We have looked into finite difference method quite extensively in the previous module and 

the method itself is discuss from the point of view of various problems whether it is advection 

equation Heat diffusion equation so we have covered pretty much final defence for various 

practical problems also for the problems we are mostly interested the Maxwell equations with 

that being said we cannot still go forward and implement any article problems before we 

discuss the domain truncation because the idea of domain truncation is integral part of any 

method so we are going to be discussing about boundary conditions in this module.  

So this is going to be very much importance for any method since we have covered finite 

difference method just recently in the previous modules we are going to set the right tone for 

the boundary conditions using finite difference method what we are also give certain point as 

for extension to other methods while we discuss advanced methods or alternative methods 

like finite volume in the later stage of the modulus we will revisit the boundary conditions 

once again but let’s start into the boundary conditions in this module and look what are going 

to be the contents of this module. 
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So we will start with boundary condition introduction and we will discuss about various 

aspects of the boundary condition and we will see certain types of absorbing boundary 

condition that we are going to be interested and we are going to see some examples or 

modelling practical electromagnetics problems in this particular exercise. 
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So let’s start with the introduction so one of the biggest challenges that we face when we 

artificially truncate domain is numerical reflection the reason we are calling it as numerical 

reflection because they are artificial reflection there is no reflection in the physical space are 

the physical problem itself but we are trying to model it in infinite space and Time we are 

going to get reflections and which we call it as numerical reflection the challenge for a 

domain truncation is to make this numerical reflection as little as possible ideally there should 

be no reflection and also we wanted to simulate an infinite competition and space using finite 

special domain this goes actually without saying that whatever we call it as finite should be 

small re enough so that computational effort that we are going to put in is going to be as 

small as possible.  

Without doing this we are going to expand the computational domain quite big for a problem 

where our real interest area is going to be very small so if we make the boundary conditions 

perfect in that sense we can make them as close as possible to the domain of interest so that 

our finite space will be as Limited as possible we will see that there is no perfect boundary 

condition to come with certain conditions that we have to accept as a limitations for practical 

implementation so this could be the fact that we will see during the course of this module. 
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So let’s look at the type of boundary conditions that we are going to look in this module 
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So the types of boundary conditions are of three main categories we call them as bulk 

interface boundary condition special interface boundary condition and ABC which is the 

absorbing boundary condition and the special interface boundary conditions are going to be 

of two types for electromagnetic problems we call them as PC perfect electric conductor and 

PMC which is a perfect magnetic conductor and in the case of absorbing boundary condition 

there are going to be two broad categories one is the absorbing boundary condition itself and 

the other one is going to be a layer which is called as a perfectly match layer obviously it’s 

misnomer to call a PML as an ABC because a PML is going to be a layer not just particular 

boundary as in the case of silver Muller absorbing boundary condition SM ABC is a silver 

Muller absorbing boundary condition.  



And EM ABC is Enguish Majda absorbing boundary condition these are two widely used 

absorbing boundary conditions which will discuss also during the course of this module so 

let’s look into the interface boundary condition from two different aspects one is from the 

aspect of bulk and the other aspect of the boundary itself. 
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So let us start looking at this particular problem assume that this is a waveguide so let me try 

it here on the paper so that you get a sense of what we’re talking about. 
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So we have a waveguide and we are trying to model this particular cross section of the 

waveguide so we are trying to take this particular cross-section which is nothing but this area 

and obviously this part are going to be the metal and this is going to be the free space where 

we are going to feed in certain mode and what you are trying to do here is we are going to 

discretise this problem so now we have converted 3D problem to a 2D problem where we are 



seeing only 1 cross section of this waveguide and of course this waveguide is going to be in a 

computational domain and we have to discretise is waveguide so let’s say we are discussing 

this waveguide using some triangles. 
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 And that’s what we have done in this slide. So there are going to be 4 Triangles inside this 

cross section as you can see if the waveguide has different materials instead of free space 

where all the Epsilon and Mu is going to be Epsilon 0 and Mu 0 in this case this waveguide 

has 1,2,3,4 different types of material obviously it’s a hypothetical case just to show the 

extreme cases what we are going to confront so we have made it like this so you have 4 

different material constituents and the waveguide cross section is going to be like this what 

are the different interfaces that are going to be involved in this particular problem is what we 

are going to look into now so what we have seen here is the red colour LINE which is talking 

about certain interfaces so what we have as interface is the interface between two dielectric 

medium so medium number 1 medium number 2 and interface between medium number 2 

and medium number 3 and interface between medium number 3 and medium number 4 so 

what we are going to see is once we are discretizing particular problem using finite difference 

method so let’s take this particular problem. 
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We have four different materials one two three and four so now I am going to discretize this 

domain by using finite difference method so when I do the finite difference method as in the 

case before I will have the Axe oriented grid and I will have the Y oriented grid on and so 

forth you have already seen in the case of the introduction of the finite difference method we 

said there are going to be certain stair casing error so we see that these are the staircase in 

error that are going to come while we are modelling because this particular cell is partly in 

material one and partly in material to similarly this particular cell is partly in material to and 

partly in material 3 so on and so forth so that is not the main important thing that I we are 

worried about let’s say we have an exact layer where 1 rectangle is going to be in material 1 

and the other rectangle is going to be in material 2 which is not the case here because we are 

having a kind of a geometry where the discontinuity is not align to the grid size itself so let’s 

take an example where our geometry itself is going to be aligned with the grid so that we will 

not have the star gazing error. 
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So what we are interested is we have a particular geometry and assume that this is a cell and 

this is another cell and one cell is in Epsilon Mu and other cell is also in excellent view if it is 

going to be a homogeneous medium it is going to be different if it is a inhomogeneous 

medium where one will be Epsilon 1 Mu 1 and the other one will be Epsilon 2 Mu 2 

assuming now for the simple case both the mediums are the same mediums so we have one 

cell that is having parameters computed at the Cell Centre and the face centre and then the 

other one has also similarly Cell Centre and centre so the value that I am computing in the 

Cell Centre I am marking them as Plus and the value that I am computing at the face centre I 

am marking them with certain different colour.  

So let’s say I am marking them with red and let me make it a little bit different so I will 

colour it and make a cross and A Plus so what is going to be the cases in the case of finite 

difference we have a staggered e and h so he is going to be let us stay at this point and it is 

going to be at the Faiz centre so similarly we can see how the different cells are going to be 

oriented but there might be methods were both a and S will be at the same point so in that 

case both a and h are going to be at the same. So we have to compute the value of e and H 

using the values at Cell Centre and extrapolating to the face centre so you will see this will be 

the case in the method of finite volume which will we will discuss at the later. Is the method 

of finite elements which we will also discuss at the later. So here we are going to see the 

interface as follows 
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The first interface condition that we are going to look into it the tangential continuity of the 

fields so as you mean that these are two cells with the same permittivity and permeability we 

are going to have the tangential continuity satisfied according to this particular equation. 
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So the tangential component of the a field and H feel so in this case the left hand side and the 

right hand side are going to be same so this is the first interface condition that we have so in 

the case of special interface conditions we have to satisfy certain other conditions. 
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For example when you see that this particular layer the layer on the top which is a metal layer 

in case of a waveguide when we are modelling them for simplicity we can assume that this 

particular layer is going to be a perfect electric conductor. 
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If it is a perfect electric conductor we know that the tangential component of the electric field 

will become equal to zero. 
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And that is what we are seeing here that is the pic which is a special interface condition we 

put the tangential component of the electric field equal to zero where is the tangential 

component of the magnetic field has to be computed and we will use this particular equation 

if it is staggered grid you have to adapt this particular equation according to the formulation 

of the method where it is non staggered grid in the case of other methods like finite element 

and finite volume you can directly use this particular formulation the minus sign and the Plus 

sign are the only written for you to know whether it is going to be left neighbour or the right 

neighbour. 

(Refer Slide Time: 13:02) 

 

so we have set here in this particular example all the boundary edges will have the right 

neighbour the left neighbour will not be there we will only have the right neighbour so in this 



case for this particular edge the right neighbour is this one for this age we have to compute 

the right neighbour has this one so on and so forth. 

(Refer Slide Time: 13:25) 

 

So let’s look at the perfect magnetic conductor counterpart in the perfect electric conductor 

we have put the tangential component of a field as zero. 
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whereas in the perfect magnetic conductor you have to put the tangential component of h 

field as zero and you compute the tangential component of electric field using the equation 

which we have given here what you also see that is this particular condition When We 

combine both the perfect magnetic conductor equation and the perfect electric conductor 

equation such that the fluxes are computed for both the tangential component of electric field 



and magnetic field we end up in the simple first order accurate silver Muller boundary 

condition. 
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That is what we have see in here we will not be using the Silver molar boundary condition in 

the case of the finite difference simulation that we are going to show later in this part of 

module just for you to know the Silver moon boundary condition is expressed by this 

equation we will revisit the Silver Muller boundary condition when we talk about the method 

of finite volumes which is an alternative method for now it’s enough for you to know there is 

a boundary condition called a silver Muller boundary condition we will see this at a later 

stage so with that being said that's going to the special class of boundary condition. 
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we have looked into three categories of boundary condition in that specific case we have 

specially looked into the bulk interface boundary condition where we talked about the 



tangential continuity conditions and we had looked into the special interface condition which 

are the perfect electric and the perfect magnetic conductor what is missing is the absorbing 

boundary condition itself now we are going to look into the absorbing boundary condition. 
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There are different classes of absorbing boundary condition as we have introduced in the 

introduction slide so we are interested in two categories first one is the pure ABC in that 

category we have already introduced the Silver molar absorbing boundary condition but he 

will also see a special kind of absorbing boundary condition which is the anguished master 

boundary condition we will derive the equation for angriest master boundary condition now 

so we are going to also introduce a very important boundary condition which is as I said in 

the part of the introduction wrong to call it as a boundary condition rather we should call it it 

has boundary layer which is called as the perfectly matched layer we will see that in more 

detail in this lecture series as well at a later stage. But we will introduce the perfectly matched 

layer for finite difference problem now and also extend it for other methods later on so let’s 

start with the simple one dimensional absorbing boundary condition. 

  



(Refer Slide Time: 16:14) 

 

Assume that you have a one dimensional unbounded computational space which we assume 

that it’s an x axis so we say it is looking like this and what we are interested is to model this 

one dimensional unbounded space using finite one dimensional space so what we are going to 

do now is we are going to truncate this one dimensional unbounded space into a finite one 

dimensional space so here the simulations face is from a to b and our goal is to make it 

simulate as if the spaces unbounded in other words what we are doing is what you want if we 

don't want any reflection to come while we truncate the space. 
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Show the ideal spaces largest space when we truncate we do not want any reflection that is 

going to come what I mean by reflection is assume that there is a way that is going from here 

to here and what happens when it reaches B is it gets reflected back so the wave that is going 

goes like this and gets reflected back because there is a truncation here this is a kind of adhere 



but the goal is to make it look as if that there is no reflection and this layer doesn’t exist it’s 

going to be replicated as if it’s an infinite in space in other words what we want is the wave 

that is going here should not see this be existing should travel as if it’s travelling in an infinite 

unbounded space that is the goal of this particular challenge. 
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So what we are doing now is we are replacing this actual domain by a finite space so the 

finite space is going to be a, b and the idea is to make sure that the reflection is going to be 

zero at this point A and B. 
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 So consider that x is equal to B and now what we are doing is we are assuming that the wave 

propagating in the plus x direction once we know that the wave propagating in the plus x 

direction we can give the analytical value of the solution so let us say we are interested in 

computing the value of E Z and it’s reckon getting along the value of x and we are saying that 



it has a certain magnitude or not and it is going to have a kind of certain dependence on the K 

using this equation and this is analytical value E 0 is amplitude and E power minus jkx is 

going to be the special dependence so what is going to happen is when the wave is 

propagating we have certain truncation that is going to happen and what you are interested is 

to compute the truncation error in the form of the reflection that we are going to see at the 

boundary a and b so let us assume that a is equal to omega by c which is going to be the wave 

number. And now we are able to substitute the value of a into that value of E z (x). 
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And that is what we are going to do here and we are going to differentiate that so what we are 

going to do is we are substituting the value of k which is omega by c. 
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So E z(x) equal to E 0 e power minus j omega by c x. And now I am going to differentiate EZ 

with respect to X is a partial differentiation so what I will get is I will get minus J Omega by 



see and I will get or not and then I will get the same equation and this particular Time is 

already E z (x) so I can write minus J Omega by c E z(x).  
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So this is going to be the value of the partial differentiation of e z with respect to X 
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Now what we are doing is we are substituting the value for minors j omega dt and writing this 

particular expression in the form of the Time differentiation which you have done here so 

once you have done we can see what happens when we apply at the point X equal to b we 

allow the wave to pass we apply this condition at X equal to be that’s what we are going to do 

so once we do that we are able to compute the value of the reflection that is going to come 

out. X equal to be in the case of the one dimensional problem the reflection will be zero 

because it will always be a normal incidence.  



So this is a very specific case because we don’t have a one dimensional case and three 

dimensional problem because we have a proper getting in Pretty much all direction so we 

cannot have the same perfect absorbing compound recondition like in the case of one 

dimensional problem we have seen so what we will do now is in the next part of this module 

we will see how we can extend this analysis for two dimensional case we will stop here he 

will come in the next module and see how this absorbing on a condition can be extended for a 

two dimensional case so we will look back in the next module until then Goodbye! 


