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So we have done quite a bit of mathematics and also numerical analysis to get to a point where 

we are finally ready to look into Maxwell's equation.  
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So today is all going to be about Maxwell equation and the slide actually is a tribute to a great 

Scottish Mathematician who revolutionized by putting together the individual parts of electricity 

and magnetism into his famous equation and one point of remark here is the kind of equation 

what we here is not actually due to Maxwell infact when you look at Maxwell's theory it would 

be more complicated than this. So what we call today as Maxwell equation is actually due Oliver 

heavy side and in that sense it also a tribute to him.  
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Without further due let us go to todays overview. Todays discussion is going to be on Maxwell 

system itself. But we will start with a continuous partial differential equation system of 

Maxwells. And then we will see how this is translating into time domain and frequency domain 

approach. So when we say FD ED what we mean is Finite difference time domain approach and 

the other one is Frequency domain approach. So I am quite happy because these earlier modules 

we have looked into quite a lot of interesting at the same time quite heavy mathematical 

discussion. Whether it is going to be a CFL condition or finite differencing techniques or Central 

Differencing or Forward Differencing so on and so forth. All these things converges into a one 

nice problem space which we call it as Maxwell system.  

  



(Refer Slide Time: ) 

 

And we are going to make use of those finite differencing algorithms or schemes that we have 

learnt so far to our benefit of modeling Maxwellian problems. Let us say we are interested in 

knowing what is inside a Maxwell system. 
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So the first equation is the curl of electric field vector is going to be negative of the time 

derivative of the magnetic field vector and I am using the word electric field and magnetic field 

here for E and B. Some engineers might have problem with this but I am trying to be very careful 

on saying why I am using the word electric field and magnetic field to E and B. And this will 

become clear in the next slides.  
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So the next equation is the curl of magnetic excitation is going to be equivalent to time derivative 

of the electric excitation plus the current density term. Obviously one of the biggest influence of 

Maxwell is putting this time derivative of the electric excitation and creating the coupling 

between the electric field magnetic field and the electric excitation and the magnetic excitation. 
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And obviously there are also two other equations which comes quite often. one is the electric 

Gauss Law which says that diversions of the electric excitation should be equivalent to the 

charge contained within the volume where Rho is the volume charge density and the diversions 

of the magnetic field B is equal to 0.  
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When you use these equations and manipulate them you essentially get when you take the 

diversions of this equation and use the values accordingly what you get is the charge continuity 

equation which says the diversions of the electric current density is equal to the negative of the 

time derivative of the volume charge density So when you apply certain manipulation on the 

second equation and substitute the values in the other equations what you will get is let us say if 

you take the diversions here and what you can apply the values in the other equations you will 

essentially get the last equation. 
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So there was a reason why I mentioned that the E and B fields are called as electric and magnetic 

field because there is something fundamentally similar about them. And that is something that 

you can see when you look into the Lorentian force. So Lorentz force is nothing but the force 

acting on the unit electric charge and also on the charge that is moving at the velocity V. So if 

you see the value of the Lorentian force is given by the sum of the forces acting on the charge.  

One will be due to the stationary charge, the other one will be the charge which is moving at a 

velocity v. So since E and B but nit E and H that is involved in the force definition E and B are 

very similar kind of quantities. So that is why it is rightful to call electric field and magnetic field 

as E and B and not E and H as contrary to many Engineering literature I am using the term here.  
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And if you look into some of the very well known physicist Sommerfeld and also Richard 

Feynman they have always used this form of notation. 
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So we will use electric field and magnetic field given by E and B and we will use the word D and 

H as the electric and magnetic excitation and this is also something will become clear when you 

look into the Finite differencing algorithm that we will have E and B that are in the same space 

whereas D and H will be in a different space. 
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And the D and H are the Electric and Magnetic excitation and the J and Rho v are the Electric 

current density and Charge volume density respectively and the units are given here. It is also 

interesting to look at all these quantities as densities of some fundamental quantities. So electric 

field will be the line density of the voltage. Similarly electric excitation is the surface density of 

the charge and similarly when you look at magnetic excitation it is the line density of the current 

and the Electric current density is given by J and the Charge volume density is given by Rho v. 

So in simple sense what I wanted to say is they are all of them are some kind of densities of 

some functions. 
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So if we take a source free region what we will have essentially is we wont have the J component 

in the equation. You will simply have the value given by the time derivative of the D is equal to 

the curl of H, similarly the time derivative of B is equal to minus curl of E. And the diversions of 

D will be 0, and the diversions of B will also be 0.  
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As you know these are all field quantities and three dimensions and they had individually three 

components where the Dx, Dy, Dz are the scalar components in x, y and z direction for D. 

Similarly you will have for other field quantities their respective field components. It is 

important to know so far I have not used any material components, when I am saying material 

components what I mean is the permittivity and the permeability.  
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And this will come into play when we are relating B and H or D and E. So that is what we have 

to define before doing any mathematical modeling so the relationship between D and B H and B 

will be given by the material relationships. In other words the permittivity and permeability. 
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So epsilon is the permittivity and Mu is the permeability. This is the information that we will be 

using in the Maxwell system. 
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So if we can use this information in the Maxwell system what we essentially transform B on the 

right hand side will become Mu H and the D on the right hand side of the second equation will 

become Epsilon E.  
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And similarly we will bring the time derivative on the left hand side and keep the spatial 

derivatives on the right hand side. We will have an equation of this form. 
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And we can set diversion of E is equal to 0 and diversion of H is equal to 0. It is important to 

notice that diversions of H need not be 0 all the time. This is something that we need to look into. 

Because the reason why diversions of v equal to 0 does not naturally give us diversions of H is 

equal to 0. Will become clear if we understand what is the relationship between B and H in a 

more general case.  
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So if you have B which is given by; these are all vector quantities so in the general case the B 

value will be given by Mu times H plus. So M will be the magnetization parameter. So when we 

say the diversions of B is equal to then we will have two components here which is basically Mu 



times the Diversions of H plus the Diversions of M. So when this becomes 0, it does not mean 

that this becomes 0 because there might be also component that is coming from the diversions of 

M. 
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So it is important to know since we have an general equation which is basically saying B is equal 

to Mu (H plus M), we have to always account for the magnetic component as well. So diversions 

of B equal to 0 does not mean always the diversions of H is equal to 0. So this value will become 

0 only when the magnetization component is also 0. In certain magnetic material you might be 

knowing that you might compute that diversions of B will be 0. But the there will be still some 

diversions of the magnetic excitation which is H. 
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So with that being said it is important to notice that this is not the general case even when B is 0. 

It is enough to know this, but in this case let us assume that the magnetization component is also 

0 hence we will have the diversions of H is equal to 0. 
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For a general problem as I said we can combine all the components into one vector which we call 

it as U, and this is vector quantity. 
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And we will have the value of the first curl equation written in the matrix form where you will 

have the individual curl components given here, so if you expand this you will get three 

components the curl will have three components the X component will given by (DyHz minus 

DzHy) similarly the Y component will be (DxHz minus DzHx) and the z component will be 

(DxHy minus DyHx). And remember these are all partial differentiation not normal 

differentiation, so you have to pay attention to that. 
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So similarly what we will get is also a set of three equations for the Maxwell curl equation 

related to the partial differentiation with respect to time for H is equal to the curl of E. And we 



will get three components for the x, y and z for Hx, Hy and Hz. And so far we are still been in 

the continuous case. Continuous because still we are partial differentiation with respect to time 

which is continuous and the partial differentiation with respect to x, y and z which is also 

continuous. 

So what we will do now is we will find a way to use the finite differencing algorithm that we 

have learnt in the previous lectures, to derive the finite differencing algorithm and this will give 

us a very nice starting point to model some of the problems that we have in Engineering 

applications. So we will get back to you in the next module. 

Thank you.  


