Computational Electromagnetics and Applications
Professor Krish Sankaram
Indian Institute of Technology, Bombay
Summary of Week 2

First we looked at the concept of numerical accuracy from different prospectives
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The first type of error we addressed emerges from linearization of any nonlinear phenomena
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The second type of error is due to spatial discretization. We also called this type of error as the

staircasing error in the case of Finite difference method
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The third type of error comes from floating point truncation or the round up error in our
calculation.
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FINITE DIFFERENCING

Finite diference egn using Taylor series

f(xo + Az) + f(zo — Ax) = 2f(x0) + (Ax)? 1 (x0) + O(Ax)*

We have a similar type of error that we addressed while studying Taylor series approximation. If
you remember we talked about the order of truncation error while introducing Taylor series
approximation for different Finite difference schemes.
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ACCURACY

Error

Mesh size

In any modelling exercise the total error is a summation of all these errors we have looked at the
graph which illustrates this as the function of spatial discretization.
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We also addressed another type of numerical error related to the face of the numerical solution

which is termed as dispersion error.
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STABILITY
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Later we looked at the concept of stability of a numerical scheme.
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STABILITY

LAX EQUIVALENCE THEOREM
STABILITY is necessary and sufficient

condition for convergence of a consistent
linear FD model

We briefly introduced the Lax theorem for stability.



(Refer Slide Time: 01:47)

|
STABILITY

Define an error at time step 72 as €' for one
independent variable

Then at time step 1 + 1, this error amplifies as,
(?n—i-l = ,(j(*”

where ¢ is amplification factor

And also investigated the role of error amplification factor.
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STABILITY

von Neumann Stability Analysis

Decompose round off errors into Fourier
space and analyze their time evolution

We shortly mentioned about Von Neumann analysis for stability to study the stability of any
numerical scheme
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STABILITY
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Conditionally stable scheme

Stability condition is given by
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STABILITY

For FTCS to be stable, 0« (';'A)'
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We derived CFL light condition for forward in time centered in space scheme giving the analogy

of the light core.
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As a first exercise we studied one dimensional Helmholtz equation.
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And calculated the Eigen values by changing various parameters of the simulation.
We also noticed the accuracy of the simulation improved as we refine the spatial discretization

which confirms that the solution is converging and the method is stable.
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The next exercise is that of a Coaxial Rectangular capacitor
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Where we calculated the capacitance per unit length by solving Laplace equation.
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We used Gauss Seidel iteration method in order to compute the solution of the algebraic finite
difference equation. We remarked that the solution converges and the speed of convergent itself
greatly varies by the choice of proper iterative method.
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% Gauss Seidel iteration

oldcap = 0;

for iter = 1:1000 % Maximum number of iterations|
f = seidel(f,mask,n,m); % Perform Gauss-Seidel iteration
cap = gauss(n,m,h,f); % Compute the capacitance
if (abs(cap-oldcap)/cap<tol)
break % Stop if change in capacitance is

% sufficiently small

else
oldcap = cap; % Contiue until converged
end

end

= = —ee

| capacitor [tn 52 Col .

We also noticed the accuracy of computed capacitance improved with respect to mesh

refinement confirming the convergence of the method.
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We noticed that the forward in time centered in space scheme is inherently unstable.
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For FTCS to be stable, 0« 24!
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And one has to keep the time stepping prohibitively small to simulate any practical problem.
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LAX METHOD

To cure instablity
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Advection equation becomes
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In order to cure this instability we introduced Lax method. We illustrated the Lax method using
an example of advection equation.
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LAX METHOD

To cure instablity
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Advection equation becomes
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The (())(03:41) of this method lies in taking the average of two neighboring special terms in the
forward in time centered in space scheme.

| encourage you to practice the exercises and examples that we have studied in this week and get
ready for the next week. So until then Good Bye!



