Computational Electromagnetics and Applications
Professor Krish Sankaram
Indian Institute of Technology, Bombay
Exercise No 6
Finite Difference Methods-11

We looked into forward in time, centered in space scheme for solving the adjection equation. We
saw that some of the inherent limitations of using such schemes for practical problem where we

quickly run into instability and time stepping should be very very small and this puts a lot of
stress on computational requirements.
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So with that we will talk about a cure for such instability issues using the Lax method and that is
what we are going to look into this particular exercise.
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Before going into the Lax method we will spend a little bit time in the forward in time, centered
in space scheme. And if that is essentially given by this particular equation what we have
forward in time, centered in space scheme. ¢ delta t by 2 delta X, the value should be much much
much lower than 0.5 when we are going closer and closer to 0.5 we run into some instability
issues.
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So in other words r equal to ¢ delta t by 2deltax which is half of the CFL requirement remember
this term is a CFL term.
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And since it is half of the CFL term we have to be in the range that is O less than r less than 0.5.
As when we are going closer and closer to 0.5 we run into instability issues. In fact we have to be
very very low compared to 0.5.

(Refer Slide Time: 01:52)

EXPLICIT METHOD
Unjt+1l —Unj _ _ Untlj — Un—-1,j
At 2Az

' cAt |
Un,jt1 = Wn,j = ga—(Unt1, = Un—1,5)

9

e L=
So now with this background we are going to go into the Lax method, so the Lax method is the
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clever way of fixing this problem. So in other words what we are going to do is instead of having
the value of U of n, j we are going to substitute average of the values.
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In the average of the values what we are doing is we are taking the value at time step j but n plus
1 and n minus 1.
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But remember our stencil is going to look like this. So this is time step j, j plus 1, j minus 1 and
this is n, n plusl and n minus 1. So we are going to compute the value at n, j plus 1.
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So this is the value that we are interested in. So initially in the case of the forward in time
centered in space scheme what we did is we used a value at time step n, j. So n, j i am going to
mark them in green. So we use this value and then we use the value at time step j n plus 1 and
then we use n minus 1, j so we use this value. to compute the value let us say at this point.

Now what we are going to do is instead of taking this value at time step n, j we are going to take
the value at j. But we are going to take the value that is average of these two values n minus 1
and n plus 1.
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And that is what this equation is about, So what do you see is we do not take the value at n. So
that way the Advection equation itself becomes as follows
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Remember in the previous case you had n, j instead of n, j | am going to use this value and then
the equation will become like this
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So once we have that we are able to somehow improve the quality of the scheme and it is
essentially goes to the CFL condition which we talked about.
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Which is due to Courant, Friedrichs and Lewy and this condition is umm pretty much going to be
there in every scheme that we are to do. And some schemes at least in the explicit methods,
implicit methods we are not worried about CFL Condition but for almost every explicit method
CFL condition is going to be very very hard condition. With this Lax method we are able to

improve the quality of the solution for a larger r value and that is what we are going to see in this
particular example.
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% MATLAB
O

Window Help = Thu 1336 Q
Editor - /Users/Krish/Desktop/!IT-B Lectures/CEMA/FOM/Matlab Example/ExplicitMethodAdvection_Eqn.m

o) 90% (%)

PUBLISH

So let us go into the Matl

method, | am going to one more time look into the Advection equation using the explicit method
which we did in the previous modules. So remember that the r value is going to be strictly lower

than 0.5. And in fact we have to have r value that is very very low compared to 0.5.
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b ‘| 3 ExplicitMethodAdvection_ orAdvectionEgn.m HeatDiffusion1DExplicitMethod.m
14 %range in space and time
}15— Lmax = 1.0; % Maximum length
‘16— Tmax = 1; % Maximum time
117— (s % Advection velocity
«18
{19 %Parameters needed to solve the eqn within explicit method
‘20- maxt = 3000; % Number of time steps
21 - dt= Tmax/maxt;
922 - n=30; % Number of space steps
wa 23 - nint=15; % The wave-front:intermediate point from which u=0
N 24 - dx= Lmax/n;
136 25 Sr=cxdt/(2.%dx);
T
H %Initial value of the function u(amplitude of wave)

for 1 = 1:(n+l1)

script n 34 Col 4
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ab program itself. Before going into the main program of the Lax
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And let us run the program one more time for this explicit method and we will see how the
solution looked how it is going to improve using Lax method. So remember our r value when it

is equal to 0.3.

fioure 1.2
“) ABC_20_FDTD.m
) ExplicitMethod...
*  ExplicitMethod. .
“) FDBOCD.m

) FOTD_10.m
#) FunctionDerivat,,
*) MeatDiffusion]...

MATLAB R2016b - academic use

/ » Users » Knsh » Desktop » 1IT-B Lectures » CEMA » FDM » Matlab Example »

New to MATLAB? See resources for Getung Started.

>> ExplicitMethodAdvection_Eqn
>» r=0.3

an.m
qQn.m-

r

0.3000

ionl

>> ExplicitMethodAdvection_Eqn

~
>>r=0.3
val -
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3
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And when we are running the equation we are running into a huge instability issue. The value of
the amplitude is going to 3 multiplied by 10 to the power 5 which is a very large value. So in
order to solve for this issue remember that the we have to go very very low time stepping.
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- figure ) 2
“) ABC_2D_FDTD.m
) ExplicitMethod. >> ExplicitMethodAdvection_Eqn
“  ExplicitMethod, . »r=20.3
“) FDBOCD.m
“) FDMWaveEqn.m
* FDMWavetqn.m~ F=
“1FDTD_10.m
=
| FunctionDerivat...
‘j HeatDiffusionl.. 0.3000
* HeatDiffusionl...
" > EqulcitMethodAdvec(ion_Eqn
»» r = 0.00001
Workspace
Name & val | r

1.0000e-05

So r value should be equal to much lower so r value typically is in the range of 0.0001. Once you
do that you start to see that the solution is coming closer and closer to the expected solution.
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So now you are able to see the value is coming closer to the expected solution where the square
wave is being replicated by the numerical method and the expected result is correct but of course
we have to go very very low in r value.
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%%% Purpose: Step-wave Test for the Lax Method

%6%% to solve the Advection Equation

%%% Computational Electromagnetics & Applications (CEMA)

%%% Chapter: Finite Difference Methods

%%% Prof. Dr. K. Sankaran

%%% IIT Bombay, India &

%%% Founder-CEO, Prajialaya, Zlrich|, Switzerland

%%% krish@sankaran.org
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113 %Define parameters for advection eqn & the range in space and
%time
Lmax = 1; % Maximum length

script n 8 Col 3
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So as we said we are going to change this situation and use a different method using the Lax
method. So let us introduce the Lax method itself in this particular Matlab code as before it is a

step wave test function.
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PUBLISH
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|~-,l Explicith ::.“-'”'_E:zr.m:n LaxMethodForAd Egn.m | HeatDiffusion1DExplicitMethod.m
40 - time(k)= (k=1)#dt;
141 - end

42

43 %sImplementation of the explicit method

a4 - for k=1l:maxt % Time loop

45 = for i=2:n % Space loop

46 - u(i,k+1)= u(i,K)= r*(u(i+l, k)-u(i-1,k));

47 - end
.48 -~ end

49

50 %Graph of the wave at different selected times
L. 51 - plot(x,u(:,1),'~',x,u(:,10),"'~",x,u(:,50),"'~",x,u(:,100),"'~")
§ 52 - title ('Square-wave test within the Explicit Method I')
§ 53 - xlabel('X")

ylabel('Amplitude(X)')

script Ln 34 Col 4

And what we are doing is we are trying to use the value instead of explicit method we computed
the value using u of i, k in the Lax method.
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1R E dAdvection_Eqn.m L orAdv: .m HeatDiffusion1DExplicitMethod.m
40
I“ %Value of amplitude at boundary
42 - for k=1:maxt+1
a3 - u(1,k)=1.;
44 - u(n+l,k)=0.;
45 - time(k)= (k-1)*dt;
46 - end
47
48 %Implementation of the Lax method
49 - for k=1:maxt % Time loop
50 - for 1=2:n % Space loop
i 51 - uli, kel)= 0.5%((ul+1,k)+u(i=1,k))= re(u(i+l, k)=u(i=1,k)));
f 52 - end

end

script In 8 Col
i | memm=g

We are going to use 0.5 U of i plus 1 of k and plus i minus 1 of k and we are taking the average

of those.
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% a9 / » Users » Knsh » Desktop » IIT-8 Lectures » CEMA » FDM » Matlab Example »
Current Folder ® Command Window

’ L) "“‘":" ) New 10 MATLAB? See resources for Getting Started.
) ASC. 20_FOTD.m >> ExplicitMethodAdvection_Eqn
#) ExplicitMethod.. >> ExplicitMethodAdvection_Eqn
" ExplicitMethod... s> close fig
‘}:g:ﬂ‘x‘&'{‘“m Error using close
“ FOMWaveEqn,m- Specified window does not exist.
:jrom_m.m
*) FunctionDerivat »> close all
. DIff | P M
o) e dlent g >> ExplicitMethodAdvection_Eqn
ExplicitMethod... A >> close all
— s> r=0.3
Workspace ®
Name s val | rs=
e W |
1 dt 3.
1 dx ot | 0.3000
o | ) 30
SN n
7y fx >>
N

NPTE

09 | ;s
Let us try running the program for various values of r. So let us say we are going from, now | am
going to keep r value as equal to 0.3. I am going to run using the Lax method so | am running it
now.
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And we will see the value is replicating even for r equal to 0.3. The value is coming closer to the
initial condition. As | said different colors are for different time steps and the initial condition is
given y this particular line here the purple line and as the time step goes forward the solution
itself is propagating in the forward direction. That is what we are expecting and that is how it
should be.
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v % 0 / » Users » Knish » Desktop » IT-BLectures » CEMA » FDM » Matlab Example »
Current Folder
W Name &
figure 1.2
“)ABC_20_FOTD.m
“) ExplicitMethod.. 0.3000
* | ExplicitMethod...
“) FDBDCD.m
“) FOMWavekqn.m
* FDMWaveEqn,m~
“1FDTD_10.m maxt =
*) FunctionDerivat
“ HeatDiffusion]...

Command Window

New 1o MATLAB? See resources for Getting Started.

»» LaxMethodForAdvectionEqn

* MeatDiffusionl 35
......... j ~ I
>> r = 0.5
Workspace ®
Name & val | rs

« 1
1dt [ X}
dx

And now we will see what happens when we go r equal to 0.5.
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You see that still the solution is within the expected range because there is kind of some errors
that are coming in the square wave function, and these are due to the numerical errors of the
scheme itself it is still first ordered and second order in umm time and space respectively. But for
that order this is very good replication of the differential equation.
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New to MATLAB? See resources for Getting Started.

Current Folder
B Name &

figure_1_2
“)ABC_20_FOTD.m
) ExplicitMethod.. 0.5000
* | ExplicitMethod...
“) FDBDCD.m

“) FOMWavekan.m
* FDMWaveEqn,m~
“JFDTO_10.m maxt =
#) FunctionDenvat
“) HeatDiffusionl...

»» LaxMethodForAdvectionEqn

* MeatDiffusionl 35
""""""" i ~
>> r = 0.6
Workspace
Name & val rs
i« 1
Ldt 0
dx o4 d.6000

) 30

And as you can see we are able to run the program for r that is even higher than 0.5. So when we
run for values that are higher than 0.5 we are still able to run the program. So what we have
demonstrated using this particular Lax method is instead of taking the value at U of n,j when we
take the average at a broader stencil we are able to improve a stability issue.
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The program is still not accurate but still it is stable enough for us to run a program to see some
simulation results. Obviously there are some numerical issues that comes because of the first
order in time and second order in space. And of course this is something that we should

definitely improve if you wanted to do any numerical problem solving using these methods.



But what we wanted to demonstrate using these examples is there is definitely some numerical
issue coming from the forward in time centered in space scheme. We can improve that numerical
stability issue or the numerical instability of the method by taking the average.
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That is what we have done using this example. So what we are seeing here is solution itself is

moving in the direction this is a 3D image of this particular solution. And you are seeing that
there is an Advection that is happening and the initial step input has to go through the entire
domain and it will propagate and that is what is the idea of the Advection equation.

We can solve the stability issue that is inherent in the forward in time centered in space scheme

using some clever way of averaging the field variables at different points in space.
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And that is what Lax method has shown us. So it enables us to run the simulation for even bigger

values of r. And now | would like to leave this particular module with the question in mind.
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That is also something | wanted you to try it out is the Staggered Leap Frog technique. So

remember in the standard Advection equation we did forward in time centered in space so we did

simple forward differencing in the time variable and we did centered in space in the spatial
variable. So what if we do both the space and time in Centered manner and that is what Leap

frogging method is going to be about.



And the standard equation for that is going to be of this form and you can basically do the
centered differencing both on the left hand side and on the right hand side.
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Remember that in centered scheme you will have the value of U of n, j plus 1 minus U of n, j
minus 1 divided by 2delta t is equal to minus ¢ Un plus, j minus U n minus 1, j divided by 2 delta
x and this 2 and 2 gets cancelled and that is why we have only delta t in the equation.
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And that is what you see in the particular equation we call this as Centered in time Centered in
space CTCS. It is nothing but the Staggered leap frogging technique. 1 would like to encourage
you for doing this Matlab program for this particular scheme as well. Of course we will provide



you with the Matlab code for Explicit method using the forward in time centered in space and
also the Lax method. So once you can have those codes you can basically rearrange the terms
and do accordingly for the staggered scheme. And you will notice that the scheme is also having
certain properties for stability and which is good in some sense for you to try it out yourself
before | say anything about it.

So that will be a exercise problem for people to look into it during the course of the week. So
now with that being said we will come to a stop at this point and then we will take it forward in
the next module.

Thank you



