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Good Morning! So welcome to the new lecture series on Computational Electromagnetics and its 

Applications. So, this particular topic is quite interesting for people working in industries or in 

Academia; mostly focusing on modeling and also modeling related to experiments. 

Computational Electromagnetics has been a topic that is gaining advantage and attention since 

the last 50 years owing to various changes in computer architecture, availability of fast 

computers, and also numerical solvers that are able to moral quite accurately quite complex 

problems.  
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So in this particular module series we will focus on finite difference methods.  
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So we will see what is going to be our motivation for this particular lecture. And we will follow 

the order as it is given here. Following the motivation we will look into the background and 

background of particularly the finite differencing method. And we will introduce certain finite 

differencing schemes. So let us go directly to the motivation;  
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The motivation for Numerical Methods is we cannot use analytical methods quite straight 

forwardly for most of the practical problems, because practical problems has always certain 

sense of non linearity. So, analytical methods fail when the partial differential equations are not 

linear.  
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We see that linearizing create serious errors. In other words, inaccuracy in the solution space. So, 

that is the first motivation for going into the non analytical or any kind of numerical methods.  
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The second thing is what happens when computational domain is complex, what I mean by that 

is for example here, let us say we are talking about a spiral antenna, which has various spirals 

several arms of spirals metallic with certain properties let us say conductivity, permittivity and 

permeability. And then backed by certain other materials which could be dielectric medium or 

whatsoever. And then has also metallic surfaces on the side. So this is quite a complex structure 

for us to analytically model. So, Analytical method also fails when the domain becomes 

complex.  
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And also when we have boundary conditions let us say, we have a set of boundary conditions 

defined on the gamma 1 which is equal to u of 0 let us say this is a very hard boundary condition. 

And then other part of the boundary of the domain let us say gamma 2 has certain flux normal 

component of the flux define, so this is called as the mixed boundary condition. So when we 

have two three different types of boundaries, also in those conditions it is very difficult to use if 

not impossible to use analytical methods. Likewise for example when we have boundary 

conditions which are also time dependent; let us say this is in the previous case we had straight 

forward as a constant. 
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Whereas in the other case when we have instead of constant if we have a time variation also on 

the boundaries. So then also the analytical methods become quite difficult. For example here, we 

have an aluminium plate (())(04:08) into you know various units and then we see that the four 

corners are having different boundary conditions which are dependent on time.  
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The last but not the least motivation is when you are talking about inhomogeneous and also 

anisotropic medium. For example in this case when you are trying to model a medium which is 



anisotropic in a particular direction and then isotropic elsewhere, so what do you see is it's very 

difficult to model such mediums accurately using analytical methods. 

So with this we see that what we have in the case of finite difference method or any numerical 

method is it gives us quite a bit of flexibility and also face out the disadvantages or the lack of 

flexibility of the analytical methods for modeling more accurately complex problems. It had been 

said I am going to go into one of the most basic methods which is called as the Finite difference 

method. Without specifying whether frequency domain or a time domain, we will just look at the 

special discrimination for the time being.  
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So the method itself was introduced in 1920s by Thorn. And he actually named the method, the 

method of squares. And it was mainly used for nonlinear hydrodynamics equation. Because they 

found out that it's very difficult to use classical methods like we talked before. So he invented a 

new method which he called the method of squares to model nonlinear hydrodynamic problem, 

that is the background. 
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But in Electromagnetics the scheme itself was broaden by Ken Yee. So Ken Yee introduced the 

method in Electrodynamics as you can see for Maxwell equation using two staggered partition 

grids. So what I mean by staggered partition grid will become more clear later on, but the 

pictorial representation here gives us a little bit understanding. There are two grids one is green 

grid the other one is the brown grid and they are staggered in space and in fact they are also 

staggered in time. This is something we will see later on, but this is the most important point. So 

what I want to do also give a little bit background on this methods. I mentioned that algorithm 

itself was introduced in 1966 by E but the method itself did not gain attention for almost a 

decade. Nobody really bothered about using the method for almost a decade. 

So that being said what was the other methods or what was keeping numerical scientist or 

computational scientist busy. They were more busy with a well established method called as 

method of moments. Which we will see later on. It was much more evolved it had much more 

numerical and mathematical tools involved in it so people were basically using method of 

moments. They did not pay attention to find a different time domain or find a different method in 

general for almost a decade. There were other problems also related to finite difference method. 

The method itself works fine but somehow if you wanted to do any practical problems, you need 

to define the method along with the boundary conditions, if not you are going to recharge-



assimilate a very large problem although what you are interested is very small area of 

computational domain.  
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So, if for example if I wanted to simulate scattering problem, let us say I want to understand 

what is a scattering of a particular object, let us say I have a car and I am talking about 

electromagnetic waves scattered by the car. So what I would do is I would model the car 

surrounded by certain atmosphere, maybe I am using a standard air, free space but since I do not 

have a proper termination so I have to simulate the car surrounded by a very very big volume, 

and although I am only interested is what is going on around the car, I need to simulate a very 

big problem because I did not have very accurate and stable boundary conditions. So that was 

one of the biggest problem of this method for a long long time, that changed over a period. So 

what happened was in 1975 it was both Tafloveand Broadwyn, they brought certain 

improvement to the stability of this method they basically computed the stability criteria and they 

also improved the methods functioning for a steady state solution for a sinusoidal input and also 

in 1977 Holand, kuns and Lee applied this method for a broadband application. They basically 

send in a pulse and simulated it for a broadband. But all these things are only still working on the 

method itself. And later on someone called as Murr came and did something called as absorbing 

boundary condition.  
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Let me explain this in a slide. Let us say this is a scatterer and then the scattering is happening, 

so there was a possibility to truncate the entire problem using a certain absorbing boundary 

conditions. So we will not focus too much on the absorbing boundary condition right now , we 

will talk about it later on but its important to know that the computational domain let us say we 

call it as omega, it is being truncated using certain conditions here at the boundary and this is 

what we call it as ABC : Absorbing Boundary Conditions. And some called as Beroje a French 

Engineer working for the electricity corporation of France. He broadens an idea which 

revolutionized and even popularized this method further called as perfectly matched layer. 

We will talk about this also during this course what is the meaning of perfectly matched layer 

and how does it work. But right now for the motivation it is enough to know instead of putting 

one single boundary what Beroje did was quite revolutionary. We will see why it is revolutionary 

later on. So he put a truncation layer and this is the perfectly matched layer.  

So we will discuss all these terms while we go forward. But, I wanted to give you a little bit on 

the historic front of the development of this method. So it is quite clear there were quite a lot of 

other things that were required for a method to be popularized or widely applied. This is not just 

the method itself but also the tools that are required around the method. It could be on the 

stability conditions, it could be on the requirement of certain truncation techniques, or perfectly 

match layer so on and so forth. 



So with this we will start looking at basically what is the meaning of this finite difference 

method. We will look at it, what are the structure of it in the next slides. 
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So the finite difference method itself is an algebraic form. Let us explain this a little bit further, 

let us say I am interested in finding out the value of certain differential on a particular grid space.  
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Let us say I have a grid space, and I have to compute the value of my function on the grid space. 

So, let me say I am interested in finding out what will be the functions first derivative on each of 

these points. At Point number 1 this is the derivative, Point number 2 this will be the derivative 

and so on and so on and so forth. So what is happening here is, if this is x and this is f of x what I 

am doing is I am computing the value of f of x and each of these points and then I am 

differentiating.  

What I am interested is, I am interested in the different by dx, this is what I am interested in. So, 

if these are the two axis and umm the X axis is the independent variable and the Y axis is the 

dependent variable, I am computing the df by dx in each point. Algebraically this is equivalent to 

say I am writing down this as a function of certain weights. 

(Refer Slide Time: 13:32) 

 

This will become clear later on, but what will essentially happen is if I have a function df by dx, 

let us say I am interested in first differential, second differential so on and so forth. And this is 

basically given as a sum of certain weights, which I call it here C, I, F, K times the function itself 

define in those points. So I goes from 0 to n, if I equal to 0, we are talking about only one thing 

and so on and so forth.  

So in this case, what is happening is there are certain weights, I am multiplying on this so you 

can basically write this as value which is containing f of x i, and then there is certain weight 



functions c of k, will be the value of d to the power of k of f by dx to the power of k. So this 

essentially algebraic equation, where the weight functions are multiplied for those value so that 

is what we mean by saying the finite difference approximations are algebraic in nature.  

Right now if you are not able to understand this, it is totally fine we will explain this step by step 

later on. Right now what you need to know is the finite difference approximations are basically 

algebraic. They are in the form an algebraic equation.  
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The second thing is as you can see here the value at a point depends on values at some 

neighboring points. What I mean that by this is, I know the value of these points given in black. I 

am interested in knowing a value let us say at this point, so the value at this point can be found 

out the using the values at these neighboring points. So we are talking only in terms of special 

derivative here ,special aspect here but if you also take the time axis into play so you can 

compute the value of certain points in space and time using the values of certain neighboring 

points in space and time as well. So the entire process of finite difference goes through 3 simple 

steps. So when I say three simple steps what are those steps? That what we are going to say. Let 

us say we take simple one dimensional example to illustrate the logic and we can expand it to 

multi dimensions. 
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Let us say we have a domain which is a one dimensional domain given by this line, what we are 

essentially doing here is we need to divide this solution domain into grids of nodes. Say for 

example 3 nodal points. Of course when you do numerical methods your domain will be much 

larger and your number of nodes will be also much larger, here we are illustrating it only for the 

sake of simplicity with three points.  
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And then the second step is, you are trying to approximate the differentials, what I mean by 

differentials is the differential equations by certain difference equation. For example in this case 

this f prime at x equal to x not is nothing but first derivative of f with respect to x at x not is 

equal to certain value that we are computing for f at x not plus delta x minus f x not divided by 

the step size in x. So the step size in x is the value here. In other words we can write this in a 

much more simple way as follows:  

(Refer Slide Time: 17:42) 

 

So let us say this is the grid and what we are having here is this is the size of delta x. So what we 

are doing next is we are trying to go forward with certain difference equation in order to 

approximate the value of the differential at certain point. Likewise as you can see we have to 

have certain boundary conditions and initial conditions BCs are the boundary conditions and ICs 

are initial conditions.  

So, when we say boundary conditions we are interested in the x coordinate of the boundary. 

Since it is a one time (())(18:19) problem what we are talking about is; let us say x equal to 0 

here and x equal to 1. So we are skipping certain values of u at x equal to 0 here and x equal to 1 

as 0 for all time variables. Similarly, we are talking about certain initial conditions if it is a static 

problem then we are not interested in the time variables, but in the case of the time varying 

problem we set the initial conditions as time equal to 0 certain value. So this value is a t equal to 

0.  



As you can see the number of initial condition also changes depending on the order of the 

problem itself that we will see in the next slides so what you need to know is when we have a 

problem, the solution process for finite difference method is you create a step 1 and then you do 

the following thing you divide the domain into certain nodal points and then in the step 2 you 

approximate the differentials using certain difference equations and then in the step 3 you use 

certain given boundary conditions and initial conditions so that you can compute the value of the 

problem space or the solution space serially in time. 
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So let us look now at certain fundamental form of finite differencing. So let us say we have a 

problem where the solution is f of x and the value of the x coordinate is given we have a step size 

of delta x, this is x not a step before is x not minus delta x and the step one forward is x not plus 

delta x.  

So let us say we are interested in knowing what is the value of certain differentials based on this 

f of x. So let us say we are interested in knowing the value of the first differential of f of x at the 

point x not. So we can do this in different ways.  
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The first way to do that is we take the forward differencing. What we mean by forward 

differencing is we say at x not the value of f dash that is the first differential at x equal to x not is 

going to only depend on the value that is one step in the forward direction from x not and x not 

itself. 

So it does not really matter what the value is here. And the value is given by this equation where 

we are taking the value at d minus the value at p divided by the step size itself. So this is a very 

simple forward differencing scheme. 
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Likewise we can do the same thing with backward differencing scheme. So here we say that the 

value at x not the first differential of f at x not with respect to x is going to depend only on the 

value at x not minus delta x and x not itself. It does not matter what the value is here it is going 

to depend only on this. So as you can see both these methods whether you are doing a forward 

differencing or backward differencing, there is a kind of a bias. The bias is it is saying what ever 

going to be the value of differential at one point is going to be only dependent on what is in the 

forward direction or in the backward direction. 
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So a safer bet would be is to take the value at both x not minus delta x and x not plus delta x; and 

that is exactly what we do in the scheme of central differencing, as you can see here.So what we 

are saying is instead of going and doing the differencing either only focusing on x not plus delta 

x or only focusing on x not minus delta x let us take both of them. That is what we are exactly 

doing here. We are saying the value of the first differential at x not is going to depend on both 

these values at x not minus delta x and x not plus delta x and of course here would be twice the 

delta x. delta x here plus delta x here. And this is the central differencing method. 

So let us summarize all of them in one slide; so we have the forward differencing scheme which 

is focusing only on forward value the backward differencing scheme which is focusing mainly 

on the backward value, and the central differencing which is taking both to delta x. 

So with that being said we can stop here, and we can summarize what we have seen. So we have 

seen now the motivation for going into the finite differencing method, why we are approaching 

finite difference scheme as compared to analytical method and we also gave you the historical 

background on the method itself. And we have introduced some very basic notions of 

differencing. Of course we have to develop them further if we wanted to model any meaningful 

problems for applications in electromagnetics. So with that being said we will come back again 

and we will focus on the further techniques in finite differencing. Thank you 


