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I hope you have done the homework that I had asked you to do namely, find out the 

relationship between the steady state speeds, the reference voltage. When we you use the 

integral feedback and as perhaps you should have expected the relationship is very simple, 

the reference voltage value E r, let us say, the constant value of the reference voltage is 

simply the tachogenerator coefficient K tg multiplied by the nominal or the rated angular 

speed of the motor omega 0. With this then, the feedback voltage is exactly equal to the 

reference voltage therefore the output of the difference device is 0.  
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Notice that I am calling it a difference device and not an error detector. The output of the 

difference device is 0, this device feeds in to the integrator and as we saw earlier, the input 

to an integrator becoming 0 does not mean that the output of the integrator will be 0. In fact 

previous to the input becoming 0, the input was non-zero. As a result of which the output of 

integrator will reach a constant value, this will be the constant value which when amplified 

will become the applied voltage voltage applied to the armature which, under rated 

conditions maintains the speed at the desired speed omega 0 and even, when the torque 

changes even, when the load torque changes the speed returns to the rated value, after a 

transient period in which the speed will either drop or increase depending on whether the 

load torque is increased or decreased.  

 

So the advantage of using integral feedback, in addition to the proportional thing K 

tachogenerator, is that the steady state error for changes in the load torque that is for 



disturbance change or a disturbance input becomes 0 and not non-zero unlike the earlier 

case, were we only had proportional feedback. You notice that the gain of the amplifier 

which amplifiers the output of the integrator K a does not occur in this relationship at all the 

reference voltage is equal to the tachogenerator coefficient multiplied by the angular speed. 

So it does not seem to depend on the gain of the amplifier.  

 

So, even if the gain of the amplifier is simply one the integrator will produce enough output. 

So as to make the motor run at the desired speed then what role is the gain of the amplifier 

playing? Now, as I mentioned to you earlier what we have been talking about is only the 

steady state behavior that is after the load torque was changed to a new value and then kept 

constant at the new value, what happens in the long run that is, if we wait sufficiently. Let us 

say, beyond more than 5 or 10 time constants of the system. This is what we will find and 

the gain of the amplifier K plays no role here but as we will see soon today. The gain of the 

amplifier plays a very important role in the transient behavior that is what happens during 

this time, when the speed is either decreasing or increasing from the rated value only for a 

short time but still it is going to change. So in what way does it change? So, what is the 

transient behavior, this will be determined by the coefficient K a  

 

Now, to see that I will redraw the block diagram of the system and I want you to go with me 

very quickly, so that we do not have to spend a lot of time repeating what we have done 

earlier. So in the block diagram now I am going to show starting with the reference voltage 

with the plus minus difference device, the output of course that is to be expected is omega S, 

input is the reference voltage E r of S and between the 2, you have the K tachogenerator 

coefficient because that feedback, we are keeping. The output of the difference device goes 

through an amplifier we combine with an integrator. In other words 1 by S is the integrator 

action K a is the scaling action and if K a is greater than 1, then we are amplifying the output 

of the integrator, this output of the integrator becomes the applied voltage E a of S. 
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Now, from that gets subtracted the back EMF, so I am showing it here as K b into omega S. 

So that difference then determines the current, armature current and the transfer function 

here was 1 over SL a plus R a that produces the armature current I a that is multiplied by the 

torque constant K T, this produces the motor torque then, we have another difference device 

from the motor torque the load torque is subtracted. So there is T l of S there this difference 

is the torque which then overcomes friction or accelerates or decelerates the motor shaft. So 

in between we have a transfer function here given by 1 by S J plus K F. 

 

So this is the block diagram of the speed control system now, let us go it over it very quickly 

E r is the reference voltage from that the tachogenerator output is subtracted, the difference 

is amplified and integrated, there is a combined action 1 by S integration, K a is the scaling 

and which will usually be amplification produces armature voltage E a from that the back 

EMF is subtracted gives rise to voltage that essentially drives the current through the 

armature inductance and resistance combination.  

 

So there is this block 1 by SL a plus R a that gives rise to the armature current K T times 

that is the motor torque, from that subtract the load torque, the difference is the torque 

available for overcoming friction and acceleration. So that going through a transfer 

function1 plus S, J plus K, f produces the output quantity namely omega S. This is the feed 

completely system, of this note that this K b block and this difference device is only 

conceptual, it is not an external thing block here K b, an external difference device, the 

motor action is such that there is the applied armature voltage and there is the induced 

voltage generated by rotation of the armature in the magnetic field and that is where the 

difference action is taking place.  

 

Of course, R a and L a are also not physically concentrated resistances and inductance 

respectively. But the motor armature has a resistance, the motor armature behaves also like 

an inductance and therefore, you have that combination then  I a in to K T, K T is shown as 

a separate block but there is nothing physical like K T. The armature current in the magnetic 

field produces a torque and K T is only showing the relationship between the motor torque 

and the armature current. Likewise, the load torque although it exists separately the motor it 

may not be possible to measure it separately. However, again conceptually or in the model 

you have the difference between the 2 and that difference accounts for either the 

acceleration or deceleration thorough J and the overcoming of friction through K f. So this is 

the block diagram.  

 

Now, what I am going to do is something we did earlier and for the moment. Let us only 

look at the effect of E r, the reference voltage that is when the reference voltage is present 

and the load torque is either 0 or we are not changing it. I told you earlier that the output 

omega S will depend on both E r, as well as T l. So it depends on 2 things and not only on 

one thing. For the moment, we will look at only the part that depends on E r and then, we 

will look at the part that depends on T l. In fact, we might even look at both of them 

although separately, one after the other.  

 

So because of this I am going to reduce and this is something we did earlier using the Mason 

gain formula, I am going to reduce the effect of T l and the effect of E a, the armature 



voltage through 2 transfer functions. So in other words, I am going to replace this part of the 

block diagram which lies between this E a, T l and omega S boundary by an equivalent pair 

of transfer functions and this thing we had done earlier. If you remember now, if I am only 

looking at this part of the signal flow graph or block diagram I have E a as 1 input, T l is 

another input, there is a loop. So I have to look at the loop gain, there is only one loop, I will 

look at the loop gain, I will calculate the delta corresponding to the loop gain and then, I am 

ready to write down the expression for the 2 transfer functions from E a to omega S and 

from T l to omega S. We have done this already. So I will just ask you to quickly go over it.  
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So the transfer function from omega S to E a of S or therefore, omega S will be equal to a 

transmittance involving E a of S minus another transmittance multiplying the load torque of 

S and what was delta well, L the loop gain was if you go back to this K T, K b and these 2 

transfer functions which are first order factors. So L is equal to K T, K b divided by SL a 

plus R a in to S J plus K f and because it is going through a positive sign and a negative sign, 

Kb is the negative sign, therefore this has a minus sign. So L is minus of that there is only 

one loop. So delta is simply 1 minus L or it is equal to 1 plus K T, K b divided by SL a plus 

R a in to S J plus K f. So this is delta, so I will write it here as the common denominator 

delta and common denominator delta for both the transmittances and now, the 2 separate 

numerators in the case of E a, the forward path is from E a through this 1 over SL a plus R a, 

K T through the other transfer function to omega going with a positive sign.  

 

Now that will be multiplied by what remains of delta but this forward path touches the loop 

therefore delta for the numerator is only one and therefore, what do I have here, I simply 

have K T divided by SL a plus R a into S J plus K f. For the load torque, the forward path 

only involves 1 over S J plus K f and with a minus sign and that minus sign, I have all ready 

put out here. So for the load torque then,  I have to simply write here 1 over S J plus K f. So 

that is the expression we have for omega S in terms of E a of S and T l of S. Note, both these 

expressions have delta in the denominator, the denominator is the same, the numerators are 

different. 

 

Now as we did earlier we will simplify the expressions by getting rid of the fractions in the 

delta term that is by multiplying by the 2 linear factors and therefore, we will get the 

following expression for omega S. Now this delta will change to something which will be 

common to both of them right. So, what will the delta change to I will have this 1 plus this 

now, when I multiply by this factor I will therefore have K, SL a  plus R a in to S J plus K f 

plus K T, K b and I am getting rid of the denominator here. So I have to multiply the 

numerator by these factors. 
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Now, when I do that for the armature voltage component then, I will get rid of the 

denominator all together I will have only K T left. So I will have in to that this whole thing 

multiplies E a of S, just check that, if it is correct minus the denominator of the second term 

will be exactly the same. The numerator, now the numerator was 1 by S, J plus K f, now I 

am multiplying that by SL a plus R a in to S J plus K f. So, what will I have there only SL a 

plus R a, the S J plus K f factor cancels out. So this is what the 2 transmittances from E L 

and T L of S to omega S look like, both of them have the same denominator.  

 

Now, if you remember and of course if you do not you can still look at it right away that this 

denominator is going to be a quadratic, its going to be a quadratic and here of course the 

coefficient of S squared will be L a in to J. So if divide both the numerator and denominator 

by that product then the quadratic will look like S squared plus a s plus b. You remember, 

that quadratic we had looked at earlier the we have looked at the roots nature of its roots and 

so forth. So that is what we will get.  
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So I will write it again as omega S equal to now for the E a S part, what do I have I have this 

K T and now I am dividing by SL a in to J. So I will have K T divided by L a in to J divided 

by S squared plus a s plus b minus the second transmittance, this time I have SL a plus R a 

and I am going to divide it by L a in to J. So if I cancel off L a, L a, I can write this as when 

I divide by J, 1 by J and in the numerator I will have a factor left and that factor, if you 

remember was 1, S plus 1 by tau a, where tau a is the armature time constant, this comes 

from tau a being equal to L a by R a.  

 

So the denominator is the same but the numerator for the load torque transmittance is a little 

different and if you remember, the denominator gives rise to 2 poles of the transmittance or 

the transfer function in each case, whereas for the transfer function from the applied voltage, 

armature voltage to the speed, there is no 0 but there is only a coefficient K T divided by L a 



in to J, whereas for the transfer function from load torque to the speed, there is not only a 

coefficient 1 by J but there is also a linear term which corresponds to a 0.  

 

So, we have 2 poles which are common to both the transmittances but only the load torque 

transmittance has a 0 and so, as we did earlier one can draw the pole 0 diagram, in fact I am 

going to that very soon. But before we go to that now, I therefore have a system which can 

be represented as follows. Now from E a and T L to omega, I am not going to show all those 

different blocks, I am going to show only these 2 blocks and if you remember, I had called 

them earlier G A of S and G T of S meaning there are 2 transmittances from armature 

voltage to speed output and load torque to output speed.  
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So, if I show that I will put here again that plus minus thing for convenience, here is omega 

S, here is the load torque and this is going through a transmit, I am sorry, a transfer function 

which we have called G T of S and this G T of S is what it is going to be exactly this, 1 by J 

in to S plus 1 by tau a divided by S square plus a s plus b and the other transmittance is from 

the applied voltage. So here is G a the input to that is E a of S. So, we have got rid of several 

blocks which were there earlier and we have represented in a different way but the rest of it I 

am going to keep the same because I have here K a by S, the amplification and integration 

operation, I have tachogenerator which provides the proportional negative feedback and here 

I have the difference device as before. 

 

So here is E r it is the tachogenerator output and it goes in to this. So this is what the 

somewhat simplified block diagram looks like and now, we want to study the effect of K a, 

this gain of the amplifier integrator on the transient behavior of the system. We saw that it 

plays no role in the steady state behavior of the system, the steady state speed is simply such 

that E r equals K tachogenerator in to the steady state speed irrespective of what the load 

torque is. So the motor will run at the desired speed, irrespective of the load torque changes.  

 



So in the steady state there is no problem but what about transient, when the load torque 

changes suddenly from, one level to another, the speed is not going to remain constant, the 

speed is going to change, change for a small interval of time before it goes back to its old 

value and it is the transient that we are interested in and that transient, we will see will be 

governed by this K a. Now the analysis that I am going to do for this particular case can be 

generalized and that gives rise to a method or an approach which is called the root locus 

method and this was introduced by an American engineer by name Evans, in the 1950, the 

method is called root locus method.  

 

So what we are going to discuss applies to a more general class of systems however, which 

look like the system that we are looking at namely there is an output, there is an input and  

there may be 2 inputs, one is the reference input or the true input, the other is the disturbance 

then you have transfer functions from them but in between you have inserted a negative 

feedback which is proportional and another feedback term are using, are applied to that 

feedback signal is this integrator action.  

 

So what we have is called a proportional plus integral control system or a P I control system. 

Of course, we can apply the technique to a system where there is no integrator that is there is 

straight or there is only an amplifier but no integrator. We will do that also that is only the P 

control but we got in to this whole thing because P controller was not satisfactory. So, we let 

us first look at the P plus I or P I controller. This is the block diagram that we have and as I 

said earlier we will look at the effects of the 2 inputs, the reference voltage input and the 

load torque separately instead of looking at them both at the same time.  

 

Now, remember that we have a signal flow graph in which there are 2 inputs, there is 1 

output, the relationship between the various signal is what is called linear. So the whole 

block diagram corresponds to a linear arrangement and in fact, we had shown that omega S 

is equal to E r multiplied by something plus T L multiplied by something else and therefore 

we can consider, the effect of E r and T L separately. This is sometimes referred to as the 

principle of super position but it is also known as the property of linearity of the system. The 

system is additive with respect to the inputs and its multiplicative or homogeneous with 

respect to scaling of the input. So because this is true we can look at the effect of E r alone 

or the effect of T L alone.  

 

So, let us look at the effect of reference voltage E r alone, so I can put T L equal to 0 as it 

where and only look at what remains. So what do I have I have a simple forward path and 

there is a feedback path and that is all I have. So I can think of a system and this is what the 

root locus method thinks about, where I have a transfer function say G a of S which 

produces an output omega of S and there is the speed back arrangement E r, I can combine 

this K a of S along with G a because ultimately one is followed by the other. 

 

So I can put that K a by S here itself. So I have a single block K a by S in to G a of S and 

here is the feedback element K tachogenerator. We are assuming that the tachogenerator has 

been already chosen. So, K tachogenerator is not going to be changed and we are looking at 

or we are going to look at the effect of the amplifier gain K a on the transient performance of 



the system or on the behavior of the system, when E r may change and later, we will see the 

effect T L changes right.  
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So this whole thing can be thought of as a single transfer function G of S and the transfer 

function in the feedback path as I have told you is called H of S. So we have the traditional 

standard block diagram for a feedback control system which is a forward path. Now I am 

going to show that K a separately, so I am going to write it as K a in to G of S. In the 

feedback path, there is H of S there is not variable gain there and there is the simple 

difference device, E r is the input and omega is the output of the whole thing.  
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Now, I told you and in fact now, we can still apply the signal flow graph idea and the work 

is so simple that we can derive the relationship between omega and E r almost immediately 

and what is that relationship, omega S divided by E r of S and actually, what we mean is 

omega S is equal to E r S in to something plus another term which involves the load torque. 

We are only going to look at one term. So this, I will put that vertical line to remember us 

that we are only looking at a part of omega S. This is given by what by Mason's gain 

formula delta what is delta here 1 minus loop gain, what is loop gain K a in to G in to H. So 

the denominator will be 1 plus K a, G of S, H of S and the numerator is what forward path 

gain K a in to G a multiplied by delta for that but delta for that is 1.  

 

(Refer Slide Time: 23:55)  

 

 



So it is simply K a in to G of S. So that is what we have the transfer function of the close 

loop system or the overall transfer function as it is called equal to K a G the forward path 

transfer function divided by 1 plus the forward path transfer function in to the feedback path 

transfer function or alternately 1 plus the loop gain or the loop transfer function. The transfer 

function going around the whole loop start with a point go through K a, G a go further 

through H. So when you are back it is as if you are gone through transfer function K a in to 

G in to H all right. So this is what the overall transfer function looks like.  
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Now, as we saw earlier each one of these transfer functions G S and H S, in general will be a 

ratio of 2 polynomials and remember, the terminology that we had introduced for the 

polynomials, n for numerator, d for denominator. So, G of S, I can write as G of S equal to 

G N of S, the numerator polynomial divided by G D of S. Alternatively, some books may 

write N for numerator G of S and D for denominator G of S depends on which you like to 

think about it. The G transfer function its numerator and the G transfer function its 

denominator that is what G of S is likewise, H of S will be equal to H N of S divided H D of 

S, the numerator part of H, the denominator part of H. Alternately, the numerator of H 

divided by the denominator of H so we think of the 2 transfer functions in terms of their 

numerators and denominator and as you know by known with the numerator part one 

associates what are called the 0s and with the denominator part one associates, what are 

called the poles. 

 

So my omega S by E r of S looks like K a in to G consists of G N by G D divided by 1 plus 

K a in to G N by G D multiplied by H N by H D. Here, G N, G D, H N, H D are all 

polynomials which can be thought of as being factorized for our convenience, if necessary. 

So this is what we have. Now we can simplify this further by getting rid of this G D, H D 

term in the denominator, in the denominator part of the denominator and therefore, we with 

get omega S divided by E r of S equals K a in to G N in to H D divided by G D, H D plus K 

in to G N, H N, K a in to the numerator of the forward path transfer function multiplied by 

the denominator part of the feedback transfer function divided by the product of the 

denominators of the G and H transfer functions plus K a times, the numerator parts of the 2 

transfer functions. 

 

(Refer Slide Time: 26:58)  

 

 
 

Now, the information about the G and H transfer functions as I mentioned to you earlier is 

normally shown in the form of what is called the pole 0 diagram and so, if here is the 

complex plane, on this complex plane I can show, G N by showing the linear factors 

indirectly by showing the linear factors by showing the 0s corresponding to G N. Similarly, 



there will be 0s corresponding to H N, there will be poles corresponding to H D and there 

will be poles corresponding to G D. Once, I do that then on the pole 0 diagram then, I can 

show the various poles and 0s. For example, I am just doing it completely arbitrarily this has 

no relevance to the example that we are looking at although we will take that up 

immediately, there will some 0s corresponding to the 0s of G and H.  
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So, they can be shown, for example there may be a 0 of G. So I will put here G N in bracket 

that is this corresponds to the numerator of G. So I can even put G here for this 0, the H 

transfer function may have a 0 or it may not have. I will put say a 0 here and I will say it is a 

0 of H that is all right. So I have shown a 0 of G and there is a 0 of H, I have to show then 

the denominators of G and H. So I have to show the poles of G and I have to show the poles 

of H. Let us say here are the poles of G, so here is a pole of G, here is another pole of G and 

may be H has only 1 pole. Let us say here is a pole of H. So here is a pole of H shown like 

that and so in this way, I can represent my block diagram with K a in to G in the forward 

path, H in the feedback path by a pole 0 diagram like this and I will put here K a as the 

overall multiplying scale factor and I will assume that the numerator will consist of terms 

like S minus something in to S minus something else etcetera, there are all the 0s similarly, 

the denominator will consists of S minus something in to S minus something else they are 

all the pole term. 

 

So we can assume that they are all being factorize with each linear factor having the 

coefficient of S equal to 1. With this then this pole 0 diagram completely specifies all the 

information that we need to know about the block diagram that we started with, all right.  

Now what is our problem, we have this transfer function omega S by E r of S and do you 

remember now, I am going to look at not only the steady state behavior. In fact, I want to 

look at the transient behavior now. So suppose I assume that E r is a constant input from T 

equal to 0 onward. So the E r of S is say capital E r divided by S then from this, I can 



calculate omega S and then from that I can find out omega T, how do I do that by using 

partial fraction expansion.  

 

So partial fraction expansion how does that proceed this denominator that we have, I have to 

factorize it and once I have factorize that denominator then this ratio or fraction can be split 

in to the partial fraction. Now, what does the denominator look like, the denominator will 

perhaps look like this. Now look at the pole 0 diagram that I have all ready drawn, let me put 

some numbers here. For example, this pole of G may be at minus 1 the 0 of G may be at 

minus 2, the pole of H may be at minus 3, the pole of G, the other pole may be at minus 4 

and the 0 of H may be at say plus 2 and the value of the gain K a may be let us say 100. If 

that is the case, what is my denominator going to look like denominator is G D, H D plus K 

times G N, H N all right, what is G D, G has 2 poles, one is at minus 2, the other is at minus 

4. So G,D is going to be S plus 2 in to S plus 4, G D pole is at minus 1, so S plus 1 in to S 

plus 4 that is a contribution of G D, what about H D, H had a pole at minus 3. So this will be 

multiplied by S plus 3 and that will correspond to H D. 
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So I will have this product of 3 factors that is G D, H D plus K a, K a is 100, so 100 times 

the numerator of G, the numerator of G, the 0 of G was minus 2. So it will S plus 2 

multiplied by the contribution of the numerator of H this is at plus 2. So this multiplied by S 

minus 2. So the denominator is a polynomial which is G D, H D plus K a times G N, H N, in 

this case it is a product of 3 times linear terms plus 100 times a product of 2 linear term. So 

what can you say about it as a polynomial, what is going to be its degree, there is this S, S, S 

3 time. So I will get an S cube term from there whereas from this I will only get an S square 

term.  

 

So the S cube term will remain therefore I will have S cube as one of the terms in the 

polynomial plus what there will be an S square but where will that S square term come from. 

It will come from this but with also come from this. So it will be some term in to S squared 



what that is can be worked out plus what about the coefficient of S. Again, this products will 

contribute this product with contribute, so something in to S plus what about the constant 

from this I will get 1 in to 4 in to 3 that is some term 12 plus from this, I will get 100 in to 

plus 2 in to minus 2 or minus 400. So it is going to be a cubic, if it is a cubic then, I can 

conceptually imagine factorized in to 3 linear factors. So I can talk about its 3 roots.  

 

Now it is not going to be easy to factorize a cubic as you know. In fact, I have asked you 

earlier and mentioned that factorization of the quadratic is very easy, we have learnt it back 

in school, factorization is a cubic, you may have learnt in your college algebra course but 

you have most probably already forgotten, it its difficult, if it is a quadratic, biquadratic that 

is 4th degree polynomial, it is still more difficult but there is a formula and beyond the 4th 

degree, there is unfortunately no formula, we have to use numerical techniques to find out 

the roots. But we can conceive that this cubic is factorized in to 3 linear factors and therefore 

we have 3 different roots. Once we factorize the denominator then, we can go back to the 

ratio the numerator divided by the denominator.  
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In this case because K a is 100, it will be 100 G N, G N is the numerator part of G. So that 

will be in to S plus 2 once again in to H D, H D is the pole of D therefore there will be S 

plus 3 divided by the same cubic in the denominator. So this is what the whole transfer 

function is going to look like and now, we can expand it in a partial fraction expansion. I 

have all ready mention that and I have asked you to read up from you algebra book as to 

how to carry out the partial fraction expansion. You do that of course this is going to be 

multiplied by E r of S and for many inputs E r of S will also be a ratio of 2 polynomials. So 

actually therefore I will have a polynomial divided by another polynomial, I have to 

factorize the denominator polynomial, do the partial fraction expansion and then do the 

inverse Laplace transfer from that I will get omega T, that is the approach. 

 



The hurdle is that I get a denominator polynomial which is such that it depends of K a and 

there seems to be no nice way of determining, what its roots are, that is the problem. Now 

Evans, in the 1950’s thought about this problem and gave a qualitative approach which can 

be made partially quantitative to get some idea of what the roots of this complicated thing, 

may be like. So this is the root locus method of Evans like the signal flow graph, gain 

formula of Mason, the root locus technique is useful for really understanding by you and me, 

for small order systems. When you have larger order systems, the root locus method does 

not become so useful if you and I have to do it by writing expressions by manipulating them 

and so on. Fortunately, today we have program packages which can do all of this and in fact 

which can plot what is called the root locus for you, all you have to do is enter the 

information for the G and H transfer functions, specify the gain K a or the gain of the 

transfer function of the system, the program will plot for you the root locus that is what 

happens for that value of K a or as the value of changed.  

 

So, if you have a higher order system not a polynomial of degree 3 or 4 or may be 10. 

Similarly, the numerator also is more complicated then factorizing, doing partial fraction 

expansion, finding the coefficients of the partial fraction expansion and all that. We can 

avoid it by using the programs which give you the location of the roots or therefore, we say 

that they plot the program, plots the root locus. But to repeat what Hamming said the 

purpose of all of this is not computation but inside, we want to understand, what may 

happen, what can happen therefore, we with follow the root locus method for a lower order 

system and see what one can get out of it.  

 

(Refer Slide Time: 38:22)  

 

 
 

So the problem then is when I have a polynomial which looks like G D, H D plus K a in to 

G N, H N, what are it is going to what are going to be its roots, not for just one value of K a 

because we want to see the effect of the gain but when the gain is changed, what is going to 

happen to the roots. So, we are looking at the equation this equal to 0 or in other words, we 

are looking at the roots of the polynomial on the left hand side. This kind of an equation is 



called a characteristic equation of the system. So one says that we are finding the roots of 

the characteristic equation of the close loop feedback control system and that involves 

finding the roots of a polynomial which looks like this. There is a part G D, H D which 

corresponds to the denominator of G H, there is a part G N, H N which corresponds to the 

numerator of G H and there is this multiplying coefficient K a that multiplies the numerator 

part and the sum of these 2 is the polynomial that we are looking at.  
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In our case, this polynomial there the characteristic equation was S plus 2 in to S plus 4 in to 

S plus 3 plus keeping K a and not writing 100 in to S plus 2 in to S minus 2 which results in 



a third degree polynomial and therefore, we are trying to find out its 3 roots as a function of 

K a, what about this part of it, that part of it comes from the denominator G H. So that part 

comes from the poles of both G and H, what about this part, this part comes from the 

numerator or G H therefore, it comes from the or it represents the 0s of the transfer function 

or the product G H which is called the loop transfer function without the multiplying 

coefficient K a.   

 

So, for this all we need to know the locations of all the poles and the locations of all the 0s 

in the loop transfer function. So for our particular example, then the locations are once again 

I will draw the diagram, there are 3 poles, one is at minus 1, another is at minus 3 and the 

third one is at minus 4, of these of course, 2 of them are coming from G, the other one is 

coming from H but as far as our treatment is concern, it does not matter which is coming 

from which there are 3 poles. The other part are the 0s, one of them is coming from G, the 

other is coming of H, once again it does not matter which is which. So I am just going to 

show here 1, 0 at minus 2 and 1, 0 at plus 2 and I want to look at it as K a varies and not 

with K a equal to 100 only.  

 

So, I will just write K a there, so this is the problem or represented on a pole 0 diagram, the 

0s are given, the poles are given, the gain K a that sought of seats between the 2 is to varied 

what happens to the roots of the characteristic equation or the characteristic polynomial that 

is the problem and that is the problem which Evans solved and he gave a graphically 

technique, therefore an approximate technique or a technique really to get some idea of what 

is going to happen rather than a technique for exact computation, that is the root locus 

method. Now, it can come as a surprise that just looking at this and of course applying once 

thinking, following the steps of Evans, there is quite a bit that we can say about the roots. 

For example, if K a, the gain is very small by that we mean I am not going to put K a equal 

to 0 because if the gain is 0 then, there is nothing in the forward path. So I will get 0 output 

but K a is very small.  
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So K a is very close to 0, now what do I mean by very small, I cannot really say but think of 

the limit therefore as K a is decreased, where will be the roots of the characteristic equation 

that is one case, second is you make K a very large, may be 10,000 not in practice of course 

but in theory, in our study. So I will put it as K a equal or nearly equal to infinity meaning 

that if K a is very large, where will the roots of the characteristic equation be Evans gave 

rules, 2 rules from which you can get this information for values of K a which are not very 

small nor very large, in other words for normal values of K, therefore which lie between 0 

and infinity.  
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You have to do some more work to in order to find out, where the roots will be but the 2 

extremes, approaching 0 and approaching very large gain that is infinity, there are 2 very 

simple rules that tell you what happens to the root. Now of course that depends on whether 

the number of poles is equal to the number of 0s or is greater than the number of 0s or is less 

than the number of 0. So, if I write N p for the total number of poles of G and H, N z for the 

total number of 0s of G and H, in our case there are 3 poles of G and H together. So N p is 3 

there are 2, 0s of G and H considered together so N z is 2, N p is greater than N z, the 

number of poles is 3, the number of 0s is 2.  

 

There can be a situation, where the number of poles is equal to the number of 0s and in 

principle, you could consider a situation, when the number of poles is even less than the 

number of 0s. So one has to consider these 3 cases, usual case is this the number of poles is 

greater than the number of 0s. For, our motor problem that is exactly what is happening the 

number of poles is greater than the number of 0s because you remember, the forward path 

transfer function G had a quadratic in the denominator therefore only 2 poles, the feedback 

transfer function was only k tg. So, no pole nor 0, it was just a coefficient. 

 

(Refer Slide Time: 44:16)   

 

 
 

So the loop transfer function G H or the loop gain G H had only 2 poles and no 0. So N p 

was2 and N z is actually 0. So, certainly N p is greater than N z, if this is the case if the 

number of poles is greater than the number of 0s then, one of the rule of Evans says that 

when the gain is very small, the roots will be very close to the poles. So for K a very nearly 

equal to 0, the roots are near the poles and the smaller the K a is, the closer the roots will be 

to the poles of the loop transfer function and therefore, one can say that if you think of 

starting at 0, K a equal to 0 and then gradually as if you have a knob by which you are 

changing the gain, you change increase K a starting from 0, slowly and you keep on 

increasing and in theory, you increase it indefinitely make it very large.  

 



The roots are not going to stay unchanged, when K a is small the roots will be having some 

values, when K a is very large they will have some other values, when K a is say 50 they 

will have still other values, when K a is 1000, there will be still some other value. So one 

can think of the roots changing there location as K a is changed and Evans’s method enables 

you to sketch or get some idea of what this would look like, if you were actually going to 

plot the root locations for various values of K a and therefore it is called a root locus plot or 

we could simply call it the root plot but as in coordinate geometry one uses the word root 

locus. So the root locus plot is just a plot of the location of root of the denominator of the 

close loop transfer function. As the gain K a in the forward transfer function is varied from 0 

to infinity or between  0 and infinity that is the gain, may be considered to be very small, it 

may be considered to be very large and then, we want to look at the values in between.  

 

So one of Evans’s rule the first one for example, we will say that if the number of poles is 

greater than the number of  0s then, for small value of K a the roots are very close to the 

poles and therefore, one can say that the root plot or the root locus plot or the plot of the 

roots starts at the poles. There are 3 poles, so there will be 3 branches of the root locus, this 

is the terminology that is used. There will be 3 branches of the root locus which will start at 

the poles, it is a very simple rule not very difficult to remember, the root locus branches or 

the branches of the root locus plot and there are branches why because there are 3 root in 

this case, in general there will be more than 3 or less than 3 roots not just one root, the 

characteristic equation is a polynomial not of degree 1 necessarily therefore, there will be 

more than one root therefore, there will be branches of the root locus.  

 

So one says in this case that if N p is greater than N z then, looking at our earlier formula 

here for example, we can see that always there will be 3 root. So the root locus will have 3 

branches so the number of branches of the root locus will be equal to the number of poles of 

the root transfer function and one says that these branches will start at the poles, meaning 

that when K a is very small, the roots will be very close to the pole location and in theory 

when K a is 0 then, what does the polynomial become this part is already gone, it is simply 

the part that corresponds to the poles. So the roots are the poles but of course this is not of 

interest because K a equal to 0 will simply give you a 0 output but no harm in saying that the 

root locus branches start at the poles for K a equal to 0. 

 

Now, what happens when K a becomes very large the answer is there will be branches or 

there will be roots which will be very close to the 0s, for large value of K. Now I have 2,0s, 

so there will be 2 roots which will be close to these 2, 0s but the number of roots is 3. So 

what about the third root. So now for the third root, one says that it has an asymptotic 

behavior and something will happen to it as K tends to infinity, it will be not be near the 0s 

of the transfer function but the third root of the remaining root will be in fact going far away 

in the complex plane, with an asymptotic behavior and therefore one can talk about what are 

called asymptotes to the branches and how many asymptotes will there be.  

 

Well, here we have N p equal to 3, so there are always 3 branches of the root locus, all 3 of 

them start at the poles N z equal to 2. So there will be only 2 of them which will be close to 

the 0s and therefore, one says they will end at the 0s and the third branch will approach an 

asymptote and Evans gave a rule for determining the number of such asymptotes and the 



location. So that one can draw the asymptotes and expect that for large values of gain K, the 

roots will be close to the asymptotes. In our particular example, the number of asymptotes is 

only one and I will give you the formula very soon. In this case, the asymptote which is only 

one will really consist of the negative real axis going towards the negative real part 

becoming infinite end. So this is the asymptote that means what, the third root will lie close 

to this asymptote and therefore, the third root will become large and negative and very close 

to being real, whereas the other 2 roots will be close to the 20s of the loop transfer function.  

 

So the 3 roots will start of at the 3 poles, so think of some curve starting from here, the 

branches of the root locus then, we do not know what happens to them right now, 2 of them 

end up at the 2, 0s. So they will end up here, the third one will go towards the asymptote and 

the asymptote is going towards the negative real axis or the negative real axis is the 

asymptote. So, the third root will approach the negative real axis going towards infinity. So 

the third root will become very large, negative real or very close to being a negative real 

number, whereas the other 2 roots, one of them will be very close to minus 2, the other root 

will be very close to plus 2.  

 

So think of it just 2 very simple rules which depending on N p and N z, tell you that the 

number of roots will be so many therefore the root locus will have so many branches and 

where will the branches start that is for K a very close to 0, where will the roots be, where 

will the branches end that is for K a very large or approaching infinity, where will the roots 

be, if N p is greater than N z the number of branches is N p all of them start at the poles 

among them N z will end at the 0s and the difference N p minus N z will approach 

asymptote. So the number of asymptotes will be N p minus N z.  

 

In our case, there are 3 poles there is only one 0, where therefore, there are 2, 0s therefore 

there will be only one asymptote, if N p is less N z the situation will be reversed, the number 

of the degree of the polynomial will be the degree N z that is of the 0 part, the branches will 

be the number of 0s then branches will all end at the 0s but N p of them will start at the 

poles and the remaining will start from a region of the z plane which is far away from the 

origin and therefore, there will sought of come in from infinity, starting being very close to 

again asymptotes. So, one can find out the position of the asymptotes in both the cases. In 

the special case, when N p equals N z now that is not a very common case but it is useful to 

think of it, when N p equal to N z then what then the number of branches is simply each one 

of them the same number. So they will start at the poles they will end at the 0s and therefore 

there are no asymptote.  

 

So there will be no roots which will be very large out there in the complex plane or towards 

infinity as one calls it, whether for small value of K or for large value of K. For all values of 

K, the roots will not become very large although they may become large but they will not 

increase to infinity or they will not for very low gain K, as you reduce the K also increase 

the infinity. They will start at the poles, they will end at the 0s, equal in number. So these are 

the 2 simple rules of the root locus or 3 if you wish, the number of root locus branches is the 

large of N p and N z, secondly the root loci start at the poles some of them, if not all of 

them, the root loci end at the 0s some of them, if not all of them and the remaining branches 

either go asymptotically out in the complex plane, if N p is greater than N z or they start 



from infinity as it where that is being very large amplitude in the complex plane and as K 

increases from 0, they will come closer to the location of the 0s.  

 

So these are the 2 simple rules of the root locus method. We will looking at some rules of 

the root locus method but in order to emphasize the power of the root locus method. Let me 

give you the solution that the Evans root locus approach is finally able to give you. I have 

this pole 0 diagram, I am going to start at these 3 poles, I am going to end at these 2, 0s and 

one branch is going to end towards the negative real axis, all right. Now what is going to 

happen in between  I am going to say something which we will look at in detail. So there 

will be some more rules which have to be looked in to. There is a rule that determines the 

real axis portions on the root axis, there is what part of the root locus can be expected to lie 

on the real axis or the other way rather, what part of the real axis will correspond to some 

root location, for some value of K.  

 

Now, there is a rule which is a little difficult but not that difficult which can be used to 

determined the parts of the root locus which are on the real axis or the parts of the real axis 

which belong to the root locus. So this rule is called rule for determining the real axis 

portion of the root locus, the portion of the real axis which belongs to the root locus. Now 

there is a simple rule for that that requires looking at the pole 0 diagram, looking at the real 

axis and then observing something and I will not tell you what it is right now, but I will 

simply give you the rule as it is.  

 

In this case, using that rule this portion of the real axis will belong to the root locus I am 

going to put an arrow on it to indicate that as K increases there will be a root which will be 

here then, it move that is for a larger value of K, the root will be here for still another value 

it will be here and so on. For very small of course the root will be very close to minus 1, for 

very large value of K it will be close to 2. So one branch of the root locus will simply look 

like this and one says, it starts at minus 1 and goes towards 2 along the real axis in this 

direction, what about the other 2 branches of the root locus. 

 

Well, again some further rules we will tell you that there will be a branch or there will be a 

portion of the root locus here between these 2 poles and nowhere else now, on the real axis 

and therefore there will be a breakup of the 2 branches, the 2 branches will go towards each 

other and then, they will breakup or things of that sought. Now this is something which we 

will have to look in to but it is interesting that simply from the pole 0 diagram with the help 

of some very simple rules, one can get some idea of the branches of the root locus, what 

they are going to look like and then, from that get some idea of what the response of the 

close loop system for certain inputs is going to be like.  

 

We will able to conclude for example that, if the gain is K a is too large with integral 

feedback then the system will oscillate that is, it will involve oscillation. The speed when it 

changes momentarily before going back to the same value will oscillate. Now, if the 

behavior is tolerable well and good, if it is not then the value of K a that you have chosen is 

too large you will have to reduce the value of K a, information like that can be obtained by 

looking at the root locus plot as given by Evans and his rules. So that is the thing that we are 

going to look at next, we will be looking at Evans’s root locus method. Thank you. 


