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A transmission line is a power system component, which is a distributed parameter 

component, and spans, you know, the component essentially is, you know, spread over a 

large geographical distance. As a result of which, the first treatment of a transmission 

line typically involves the formulation of equations, in terms of partial differential 

equations. So, we did this last time. A transmission line is effectively modeled by these 

equations. They are also called telegrapher equations and these are partial, set of partial 

differential equations. 
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Now, if resistance and the conductance are neglected, I mean they assume to be 0, in 

such a case, they are normally quite small.  
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In that case, the response of the transmission line is given by the very well known 

traveling wave equation. This is of course, with the assumption that R and G are equal to 

0. Since, small c here is the velocity of light, remember, the L and C here are the 

inductance and capacitance per unit length. Capital C, that is upper case C and upper 

case L are, in fact, the inductance and capacitance per unit length. So, this is one of the 

important equations, travelling wave equations. 

Now, in this particular lecture, we will continue with our discussion of transmission 

lines. We were kind of poise at very interesting discussion in the previous lecture. We 

continue with that discussion and hopefully by the end of this lecture, we shall come to a 

fairly useable model of a transmission line, not only for high frequency studies but, also 

for lower frequency study, of lower frequency phenomena. Thereafter, we will go on to 

the study of prime movers. So, in this lecture, we will began with, so, will do the study 

of, we will continue our discussion of transmission lines. Sometime at the end of the 

course, of this lecture, we will also try to; I will try to introduce you to prime movers 

systems. 

Now, one of the interesting discussions which we kind of left half way in the previous 

lecture was the model of a transmission line, the dynamical model of a transmission line. 

Of course, I have already given you a dynamical model but, it is in terms of partial 

differential equations. The solution, surprisingly for a last less case is very neat. The 



travelling wave equation looks very neat. Now, if you want to actually, you know, 

understand how a transmission lines behave, so you will have to use a partial differential 

equation solution. 
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Now, we have in our under graduate years come across this model of a transmission line. 

This model is a pi equivalent of a transmission line, is a pi equivalent of a transmission 

line. But, it is very important to remember that, this equivalent using, in fact, lumped 

blocks of impedances susceptance or I should say impedances and admittance, are 

actually valid only for sinusoidal steady state conditions. 
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So, in fact, if you look at what z bar and Y bar mean in this equation, they are, in fact, 

impedance and admittance and what you have is gamma here. Gamma bar, in fact, is 

determined by this. So, remember that, frequency comes in this and distance also comes 

in this but, this is essentially a sinusoidal steady state model. As I mentioned in the 

previous class, we may be tempted to, you know, consider this model, as you know, 

correct for dynamical, for the study of dynamical phenomena as well. The answer is, 

strictly speaking, no. Remember that, this is a lumped parameter pi equivalent which 

tells you the correct terminal relationships in case of sinusoidal steady state. But, the 

correct solution for a loss less line, in fact, is given by these equations. Of course, in the 

case were R and G are not equal to 0, you would have to find ways of solving the partial 

differential equations. You will not get a neat solution like this, in case R and G are not 

equal to 0. 

So, this is something which has to be made clear. Interestingly, the partial differential 

equation, the loss less case, the solution with the loss less case, in fact, tells us something 

about a transmission line which is very neat and nice. In fact, a transmission line using 

these, this solution, it can be shown that, if V k and V m are the instantaneous voltages at 

both end of the line, and I m and I k are in fact, the currents at both the ends of the line. 



(Refer Slide Time: 05:54) 

 

Then, you can represent i m as, i m is dependent on V m by this equation were z c is, in 

fact, the characteristics impedance. We have discussed what characteristic impedance is. 

z c is root of L by C, were L and C are, in fact, inductance and capacitance per unit 

length. Small c is the velocity of electromagnetic propagation which for, air is practically 

equal to the velocity of light. 

So, that is, 1 upon square root of L C. Now, what is getting at is that, the current i m can 

be written down as a function of the current i m at a time peri[od] time instance t, can be 

written down as a component which is dependent on the voltage at that end of the line. A 

current source I m, which is, in fact, dependent on the currents and voltages, which exist 

at the other end of the line t by d by c seconds ago. t minus d by c, actually tells you that 

I m is equal to i k sometime before. What i k was sometime before and Similarly, it is 

also dependent on what V k was sometime before. 

So, it depends on what was existing at the other end of the line sometime back. Similarly, 

I k can be represented in this way, where i k of t is equal to dependent on V k of t sorry 

V k of t and the current at the other end of the line. This I, capital I k is, in fact, a current 

source, which contains what are known as the history terms. So, if we look at, in fact, the 

first equation, what it tells is the equivalent at one end of the line. 
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So, if you look at i m at one end of the line, you can see that this equation effectively 

tells you, I m can be obtained by a circuit of this kind. 

So, all I have done here, of course, is represented this equation. I just represented this 

equation. I have just represented this equation by this circuit. So, if you manage to solve 

this circuit, you know, of course, you need to you know, define what else is connected to 

the system. But, the point is that, if I locate the equations there effectively, you know, 

representative of this circuit, it is a resistive circuit. This is a history term. Similarly, you 

can obtain i k from this circuit. So whatever, if you solve this circuit, you will get i k. 

This i m and i k, remember, capital I m and capital I k are, in fact, history terms which 

depend on the currents at the other end of the line. So, it is a very important thing to note 

this, that these are in fact history terms, which tell you about the current at the other end 

of the line and some time ago. That some time ago is of course, d by c, d is the length of 

the line divided by c seconds before. 

So, in fact, it is an interesting point here that the solution of a loss less line, in fact, 

comes out to be simply algebraically related to the currents at the other end but, of 

course, with a time deal. It is pure transport dealing. So, in fact, this in fact is useful, if 

you want to for example, simulate a transmission line. So, if I tell you, you know, the 

conditions which exist at the boundary of a transmission line, the boundaries of a 



transmission line, you should be able to tell how the system behaves for other instance of 

time. 
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So, for example, if you look at this, in fact, equation, if you call d by c h, so if I call d by 

c h, where h is, you know, I can evaluate the values of i m t and i k t at discrete instances 

of time by using these algebraic equations quite easily. For example, I could try to 

understand the behavior of a transmission line for example, which is connected to a 

voltage source. So, this is our transmission line. I can use this. Suppose, I want to 

understand, how the voltages and currents behave, in case I switch on a voltage source at 

t is equal to 0 and I want to know, how this voltage at this end varies and how this 

voltage here varies under open circuit conditions. That is, the current at this end is 0 and 

the voltage here is defined at, t is equal to 0 onwards. 

With this information, I could evaluate i m and i k at discrete instance of time. In fact, 

those discrete instance of time are the time required for the wave to travel from one end 

to the other. So, this is a very interesting kind of equation that we get which is of course, 

not true in case, R and G are nonzero. So, let me just again repeat what I what I said in 

case, I present to you a circuit, which needs to be simulated, a transmission line behavior 

which needs to be simulated, the dynamic behavior then, I can use these equations. These 

equations are, in fact, algebraic equations with a history term. The history term, in fact, 



involves voltages at the other end of the line, voltages and currents at the other end of the 

line. 

So, if I tell you the boundary conditions, that is the voltage or current conditions at one 

end of the line and the other end of the line, you should be, for all other instance of time, 

be able to tell how the behavior is. In fact, it changes at every h interval of time. It 

changes after h, a period of h, where h is d by c, the amount of time it takes for the 

information to travel from one end to the other. 

So, this is one interesting outcome of the travelling wave equation, that you can actually 

simulate a loss less transmission line quite easily. I mean, it looks very complicated but, 

if its loss less, you can simulate it quite easily. Now, one thing I should mention here is 

that, I am evaluating the currents and voltages at both ends of the line at discrete. I can 

easily obtain it at discrete instance of time, because of the nature of the algebraic 

equations which I am getting. So, this is somewhat different from the discretization, you 

know, kind of thing we were doing for other circuits. 
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For example, if you have got a lumped inductance, if I discretize it using trapezoidal 

rule, if I discretize the equation L d i by d t is equal to the voltage across a lumped 

inductor, then I will get i at k plus 1 into h. This is the current at the discrete time instant. 



So, if I have discretized using trapezoidal rule. This is k plus 1, of course, should be 

inside a bracket, into h divide by h is equal to V k plus 1 into h plus. So, this is of course, 

into l plus V of k into h into half. So, in fact, the discretized equation of, for a lumped 

inductor using trapezoidal rule is, in fact, this. Out here also, you will notice that the 

current at the k plus 1 instant, is dependent on the current at an earlier instant. 

So, this is an interesting thing. So, if you discretize a continuous time lumped parameter 

equation again, you get basically the answer, you get a kind of when you discretize it, 

you get essentially an algebraic equations which relates new value of, in this case, the 

current, the new value of the current in terms of the history, the current and voltage 

history of this circuit. But remember that this, you know, dependents on a history term is 

local. In the sense, the current at the k plus 1, the instant depends on the local current and 

voltage at the kth instant. But, in a case of a transmission line, remember that our current, 

you know, at the one end of the line at the kth instant, depends on the current and 

voltages at the other end of the line, d by c seconds before 

So, this is something which is fixed by the nature, that is, the length of the circuit as well 

as the physical parameter. Let see, which is the velocity of light for an overhead line? 

Whereas, when you discretize a lumped parameter, a lumped parameter device like an 

inductor, lumped inductor, you again get an algebraic relationship. But, remember that 

the dependence on the history term, rather the history term is still local. In case of a 

transmission line, the current at one end of the line is dependent on the current at the 

other end of the line at a previous time instant and the time instant is really dependent on 

the distance. 

So, whereas here, it depends on the time step you have chosen for discretizing this 

continuous time differential equations. So, there is slight difference between what you 

are getting there and what you are getting here. But, it turns out that since this kind of 

algebraic relationship is obtained for a transformation line directly, you can interface the 

transmission line equations and the equations obtained by discretization of a continuous 

time lumped parameters element like inductance and do a simulation. 
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For example, it is it is not very difficult to do a simulation now because of these facts, of 

a system like this. You have got a transmission line, and at the other end, you have got a 

lumped parameter inductor. 

So, when you discretize this, you will get basically algebraic equations with history 

terms and of course, the discretization interval is h. Out here, you again get voltage and 

current at both ends, dependent on one another but, of course, there is a delay element. 

They depend on the history terms with, you know, the history being the relevant to what 

what was the situation d by c seconds before. 

So, if actually, if I chose h to be a multiple of d by c or h equal to d by c, it should easily, 

one should be easily able to interface the discreet time equations which you get here with 

the algebraic equations which are given by these, which are given here. So, this is an 

interesting thing. In fact, this is the way, you know, transmission lines are represented in 

programs called electromagnetic transient program. So, this is how things are done here. 

You got a transmission line; you assume it, suppose you assume its loss less, then the the 

currents and voltages at discretize instance of time can be obtained by these algebraic 

relationships. Continuous time system lumped parameter systems are connected to the 

transmissions lines, in fact, can be brought to a similar form because of discretization by 

some numerical integration method. In, fact if the h is either a multiple of d by c or equal 

to d by c, this this becomes even more easier to interface all these equations. 



So, just chew upon this and you can actually do a simulation of a transmission line 

connected to lumped capacitor or lumped inductor and so on. It is not very difficult to do 

that. So, only thing is of course, that there is an important assumption here that the line is 

loss less. So, can you think some means of, kind of taking into consideration, you know, 

the losses in the line that is nonzero R or G. The answer is, well the the equation which 

we get, travelling wave equation or this algebraic relationship which we got, is true only 

for R is equals to G is equal to 0. We just cannot use this and we cannot use this. We 

cannot use this simple algebraic relationship between the currents and voltages at either 

the end of the line which we have just discussed sometime back. 
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So, if R and G are to be brought into the picture, the best idea would be to consider loss 

less line as consisting of loss c line, as consisting of loss less line plus the effect of the 

resistance is considered as a separate series resistance which is connected separately 

outside. So, this is a lumped resistances plus a loss less line. So, this is what seems to be 

reasonable reasonable thing to do. I mean, of course, the validity of this approximation 

needs to be checked out. I mean this is of course, something which you occurred to as a 

nice trick to, you know, use this algebraic relationship even when the system is a lose 

system. 

So, you consider a lose transmission line is a loss less transmission plus the effect of the 

resistance is considered separately as a lumped element. So, this is how you would try to 



simulate or understand the effect dynamically behavior of a transmission line. There is 

one more small issue which you need to tackle. This is something I will not spend a lot 

of time, but, you can just think of, in case, I want to do a simulation of a transmission 

line like like it is shown here and the discretization of the lumped element like an 

inductor which is connected, say at one end of the transmission line is done at a time step 

of h. And, d by c, that is, the length of the line divided by the speed or the velocity of 

propagation is not an integral multiple of h. In that case, it turns out to be somewhat 

difficult to interface the algebraic relationships which you get of the transmission line 

with the algebraic relationship, which you get by discretizing the lumped parameter 

continuous time differential equation with a discretization time interval of h. 

So, what one would normally do under that such a circumstance is try to get h to be 

rather d by c to be an integral multiple of h, as close to it as possible, I mean not be 

exactly equal to, d by c may not be exactly equal to k by h but, you can make it 

approximately so. 
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Alternatively, you would need, in case you do not, you cannot really achieve this. What 

can you do? So, this something you can think over. 

This is left to you to think over what would be a reasonable or, you know, a satisfying 

way, let me say of handling a situation where d by c is not an integral multiple of h. As a 

result of which, it becomes difficult to interface the algebraic relationships obtained from 



the travelling wave equations of a transmission line, with the discreet time equations 

arising due to the use of some numerical integration technique for a lumped element. 

So, this is essentially how you would, this is of course, particular issue which you may 

need to tackle. But, there are reasonable ways to really solve this problem and I leave 

this to you to think about. The next issue is something which I actually left you in the last 

lecture was you have got this lumped pi equivalent of a transmission line from sinusoidal 

steady state analysis. The question is, would that lumped parameter, let me call it model 

of a transmission line, a lumped parameter model of a transmission line obtained from 

sinusoidal steady state analysis safes to really simulate or mimic the behavior of a real 

transmission line. That is a question which you would like to answer next. 
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So, as I, you know, discussed in the previous class, I mean I left you with a problem. If 

you recall what we did last time, the problem was this. This is an example from the book 

by Sauer and Pai where you got a transmission line which is 100 miles. It has got these 

parameters L is 1.5 mille hendry per mile, C is 0.02 micro ferret per mile and you switch 

on a voltage source which has a sources of 10 ohms onto the transmission line which is 

open circuited at the receiving end. Now the question which I post to you was that, if I 

try to simulate or understand the behavior of this transmission line by using the algebraic 

equations given here the algebraic equations given here and see how this system 

behaves. 
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In that case, how the response differ in case I took instead a lumped parameter model of 

a transmission line, where the induct, this inductance I assume to be L into h. Remember, 

L is inductance per unit length L into d and this is C into d by 2 and C into d by 2. C is of 

course, the capacitance per unit length. 

So, the question is that, if I use this lumped parameter model of a transmission line and 

try to find out how this system behaves, in fact, you can analytically get the response or 

even numerically integrate and obtain the response. How does this system behave as 

compared to a proper simulation of a loss less line using the travelling wave equation? 

So, you use the algebraic equations with history terms which are actually obtained from 

the travelling wave solution of a transmission line and see how both of them compare. 

So, if you do that, you get somewhat surprising result. So, what is that result. 
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So, if you look at, this is actually the response of the transmission line. The the bold, 

what you see as the bold line here, it looks a bit like square wave initially, is actually the 

response obtained from the travelling wave model. That is, using the travelling wave 

kind of response of a transmission line, that is using the model, the algebraic model of a 

transmission line with history terms as I sometime mentioned sometime back. Remember 

that for this particular circuit, the receiving end reacts or you will see something 

happening only after the wave reaches the other end. 

So, this is what you will get using the, you know, the kind of the algebraic equations 

with history terms which are valid for a loss less transmission line. This is also called 

Bergeron method. Instead, if you use the Pai model using lumped parameter that is 

lumped inductance is in capacitances, you get what is seen here is a dashed line. One of 

the important differences between the travelling wave response or the detail response of 

a using the travelling wave model of a transmission line and the lumped parameter 

response is that the lumped parameter response starts immediately after the disturbances 

is initiated at the sending end. 

So, you see the effects right away, whereas, there is a clear time delay when you consider 

the travelling wave model. The travelling wave model of course, is more accurate. So, 

what you really, although we are talking of a comparison, remember that a travelling 

wave model is actually they more accurate one. An interesting thing of course, which 



you see here is that although there is of course, a difference between the travelling wave 

model and the lumped parameter simulation of this system, there is some similarity too. 

In fact, if we look at the response, it seems to be some kind of a filtered response, you 

know, the lumped parameter response is a kind of a most smoother and you can call it a 

kind of low frequency part of the response. 

So, if you look at, it is similar. It is not the same, of course, but it is similar. And, in 

steady state, if you, of course, if you allow this particular system to settle down, 

remember what is the system we have considered. Please have a look at it again. If you 

look at this again, it is a sinusoidal source switched on to an open circuit at in line. 
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So, if you wait for a long enough time, one would expect that the system would reach a 

sinusoidal steady state. The interesting thing is that, if one looks at, you know, the 

receiving end voltages after the system is allowed to settle down, you will find at, in fact 

both the lumped parameter model as well as the travelling wave model also called a 

Bergeron method, settle down to the same value. Now, why this is so? In fact, this is not 

surprising at all. Remember that the pi equivalent is valid. It is valid, in fact, for the 

sinusoidal steady state. 

So, the travelling wave model is essentially settling down to the same steady state. So, as 

far as the sinusoidal steady state is considered, the Pai model of a transmission line is in 

fact correct. In fact, there is nothing wrong with it. Only thing is that, the initial part of 



this transient which we saw in expanded portion in the previous slide, there is some 

difference. There is some difference in the initial part of the response, using a more detail 

partial differential equation model as compared to the lumped parameter model. 

So, this is what essentially you will be losing out, in case, you know, you choose a 

lumped parameter kind of a model. Now, it is obvious that if you are not interested in the 

high frequency transient, which are seen right at beginning of this plot, then it appears 

that you can just as well use the lumped parameter model. 

So, if you are not interested in high frequency transients, in fact it is a good enough 

approximation to even do dynamical analysis with the lumped parameter model. But 

remember, the origin of the lumped of the parameter model. The origin one was actually 

from two port equivalent and the sinusoidal steady state condition. But, you can actually 

use it, if you want to obtain the low frequency behavior of transmission line. So, it is ok 

to use Pai equivalent model. 

So, this is what we get from this particular study. What you cannot, of course, get from 

this model, the lumped parameter model is the behavior just after the disturbance. Then, 

there is a substantial difference. So, this is something which we saw some time back that 

right at the beginning, there is a difference between the responses. Although, the 

responses are similar, they are still different. Now, going on further, in fact our 

discussion so far has been restricted to, a kind of a single phase line, a distributed 

parameter model of a single phase line and we actually got the travelling equation wave 

equation for it. The question which we can ask our self is, if you got more than one line. 
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For example, suppose you got a bipolar line. That is, the electromagnetic environment 

consists not only of two lines but, something like this, two transmission lines and the 

ground. So, the ground also could be a part of the electromagnetic environment. There 

could be current, for example, in the ground. In such a case, our equations, the equations 

of a transmission line are in fact, suppose the current through this is i 1 and this is i 2, 

then we can show that the at any, just like in the previous case, you can write down the 

equations, like these are partial differential equations. 

Remember that, what we are doing different from the previous case, is that we have 

introduced another conducting kind of system into the analysis. This is a ground. So, the 

electromagnetic environment is slightly different from the previous case where you just 

had two lines in this universe and nothing else. Now, we have got v 1, say at a distance x 

as before. This is v 1. This is the loc[al] the voltage of this point with respect to ground at 

this point. So, one should be very clear about what we mean by this. Similarly, the 

voltage of the other wire, at any point of the other wire with respect to ground locally is v 

2. 

So, you have got v 1 and v 2. Of course, I have shown this slightly tilted, so you can look 

at it this way. This is ground, so this is v 2, this is v 1 and this is i 1 and this is i 2 and 

like before, you have got the sending end and the receiving end and so on. So, the 

equations for v 1 v 2 i 1 i 2, v 1 and v 2 are the voltages with respect to the local ground 



here are in fact given by, I am sorry this should be, yeah, so, we will have a matrix here 

is equal to, just a moment we will just yeah. 
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So, what is different in this case as compared to the next? Remember that v 1 is the 

voltage of the first, at a point on first wire with respect to the local ground. v 2 is the 

voltage with respect to ground, the local ground for the second wire. i 1 is the current in 

the first wire; i 2 is the current in the second wire. You could have in fact, current in the 

ground. In fact, the ground current, in case i 1, if i 1 is not equal to minus i 2, in such a 

case, you can have currents to the ground. So, in some sense, what I am doing here is 

including the effect of ground or the electromagnetic environment around these two 

wires as well. So, this is basically equation which you get and a similar equation exists 

for the current as well. 
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So, you have got L s L m. These are inductance. You have got an inductance matrix is 

equal to this, for loss less case, of course. Now the question is, we had considered the 

equations of a transmission line earlier, this of course, with losses. But there, we had just 

the voltage across the line and the current. There is only the current. Whatever the 

current flowed here was equal to the current, which, so this is whatever the current, 

suppose you have 1 amp flowing in this direction, 1 minus 1 amp would be flowing in 

this direction. 

So, this was the situation before. Now, we have got the ground with possible current 

flow through the ground and you have voltages with respect to the ground v 1 and v 2. 

So, this is what is different. So, we have got more variables and you also got a bit of 

coupling. These variables are coupled to each other. So, how does one solve in such case. 

So, this is the actually as a simple case of how you can use mathematical tools to solve 

this kind of situation. Now, in fact with r and g equal to 0, we know the solution of this 

equation is actually the travelling wave solution. Can we directly apply this to this 

situation? The answer is no. We cannot directly apply because now, you have got a 

coupled set of, you have got two sets of equations and each of them is in some sense, a 

vector equation. 
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So, how do you solve this problem? In such a case, if you have defined the difference 

voltages v 1 minus v 2 and the common voltage as v 1 plus v 2, say divided by 2. 

Similarly, i difference and v common is equal to i 1 plus i 2 divided by 2. In fact, the 

common current is in fact, proportional to the ground current. So, if I transform v 1 and v 

2 to v diff v com i diff i com, I can reformulate these equations. This is something I leave 

for you to do. You can reformulate the equations in i diff i com v diff and v com and one 

very interesting thing occurs, is something you can, is very very easy to prove. 
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So, you have got for example, d i diff by doe t, d i com by is equal to, you can 

reformulate the equations in terms of these new variables. The surprising thing is that, 

this is a diagonal matrix, in case you use this transformation of variables. In fact, the 

terms are in fact, L s minus L m and here you get L s plus L m 0 0. 
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Similarly, you will have C s minus C m 0 0 C s minus plus C m doe v diff. So, what you 

have essentially is, this kind of decoupling takes place between the i diff and i com 

variables. 
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As a result of which, you can take the pair i diff and v diff and v com and i com and 

essentially, since v diff, the equations between i diff and v diff are completely decoupled 

from the equations of v com and i com and the equations in fact, are very similar to these 

ones. Of course, with r and g equal to 0, you can actually get a travelling wave solution 

for v diff i diff v com and i com separately because, there is complete decoupling 

between these and get the solution for this system as well. 

So, it is very interesting thing, which I have tried to tell is that, you can use 

transformations. This is basically, linear transformation of variables in order to get 

decoupling. Once you get decoupling, you can get the travelling waves solution for the 

diff variables and the com variables separately and if you want to get v 1 and v 2 

eventually in the end, you just super impose the solution. You just add up the solutions, 

you know, by using the reverse transformation. I should say add up and use the reverse 

transformation to get the original variables. 

So, it turns out that, even in cases where you have got a system, you know, you can 

imagine that, if you got three phase system. 
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So, if you got three phase system and with ground as well, this is a typical 

electromagnetic environment which you will see. In fact, you can have clients in close 

proximity to each other et cetera. It turns out that, although they are coupled partial 

differential equation in the original variables like v a g, that the voltage of a phase with 



respect to the local ground, if you if you formulate the equations in that way using the 

the phase variables with respect to ground, the voltage is of the phase variables with 

respect to ground or the individual phase currents, it turns out that, in fact you will get 

some kind of coupling.  

But, if it is symmetrical system, as in the, you know, the case which I showed you 

sometime, you had a symmetry C s C m C m C s. The matrix which related all the 

original variables was symmetric. Now, if the symmetric, if the system is symmetric, it 

turns out that some of the transformation we have studied before can be applied to the 

three phase case and we could actually do, kind of, we can get a neat model in terms of 

the new variables. 

For example, you may ask, can I apply the d q transformation which I have used for 

studying synchronous machine to a three phase transmission line? The answer is yes, you 

can, provided it is a symmetric transmission line. 
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So, if you got for example, a transmission line which is, which has got parameter like 

this, it could be a lumped parameter representation. In which case, of course, a 

transmission line becomes for example, if you are studying transmission line using the 

lumped parameter approximation, we have already discussed this in the beginning of, 

rather sometime ago, so you will have d i a by d t for a three phase system is equal to V a 

1 minus V a 2 V b 1 minus V b 2 and V c 1 minus V c 2 and of course, so this is 1 and 2. 



So, actually V a 1 means the voltage a with respect to the local ground at this end of the 

transmission line. V a 2 is the voltage with respect the local ground at the other end of 

the transmission line. So, see this is the lumped lumped parameter model of a 

transmission line which you have, suppose, I wish to use. Now the question, which is the 

limited question we have asking here is not about the lumped parameter or distributed 

parameter lines is whether, but, can we get a transformation to make this decoupled set 

of equations or rather I can ask you a very more specific question. If I transform i a i b i c 

to i d i q and i 0 and V a V b V c also to, you know, the d q variables, what will happen 

of this, you know, equations. 
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So, what the question is, the differential equation in fact, will look like this eventually. 

Where this is nothing but, what obtained by applying the transformation of variables. So, 

what I have done is applied at time variant transformations c p. Do you recall that the 

time invariant time variant transformation C p, which is a function of theta. Theta is the 

angular position of a machine. Of course, now the question arise is, which machine or 

there is no machine here. But, suppose I take any machine and use its theta and transform 

this this set of equations, in that case, you will get basically, and this matrix will get 

transform to this matrix. It in fact turns out to be diagonal. How you will get it? 

Basically, I have replaced i a i b i c by i d i q and i 0. So, what what you of do is, suppose 

I call this the L matrix. 
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So, what you have is L d i. This is just written in compact fashion. So, I am just writing 

these equations in some kind of, it is just a compact form of way of writing this equation. 

These are all vectors. This is the, L is the matrix. So, when you transform, you will get L. 

This is C p. So, this is what I get. Is this correct? Is it fine? So, in fact, if you evaluate C 

p inverse L C p and L matrix is symmetric, it turns out that this new L, that is C p inverse 

L C p, it turns out to be a diagonal matrix. 

So, it is an interesting and nice thing, for nice thing to happen, in case, if did use the d q 

transformation using spark transformation of some machine. Now, is this equation 

correct? Well, the answer is no. There is an error which we have actually done. So, this is 

in fact not true. Remember that, d of C p into i d q 0 is, will have another component d C 

p by d t into i d q 0. C p is also function of time. So, actually this equation is not correct. 



(Refer Slide Time: 52:36) 

 

So, there is going to be an additional term here, which has to come, which is, in fact this 

is something you can try out yourself. It is going to be, so it is going to be this into this 

matrix. So, it is, suppose I call this matrix L dash. This will become L dash. So, basically 

what you will have is this equation. So, remember that this is because you have to take 

the derivative of the time varying transformation, whenever you going to rewrite the 

equations in terms of the d q variables. So, you are going to this get this extra term. 

So, actually you can in fact, write down the equations of a para transmission line 

element. For example, the series reactance of a transmission line, in case you are talking 

in terms of the lumped equivalent, you can even write the partial differential equations in 

terms of the d q variables. There is nothing, you know, special about the lumped 

equivalent here. So, you can actually get the equations in the d q variables. So, you can 

actually interface the transmission line equations with eventually machine equations 

which are there in the d q variables. This can be done. 

So, this is an important point. So, the final equation which you get for the transmission 

line or in fact can be written down in the d q variables in this form. In fact, one important 

point which I must emphasize here is that, in case this matrix L is not symmetric, that is 

there is some unbalanced or asymmetric in all the phases. In such a case, applying the d q 

transformation may not be, will not be of much use because you will not get this kind of 

nice time invariant and diagonal form of the matrix L dash. So, in case your L is not 



symmetric, it is not, it really arises from a unbalanced kind of configuration of the 

transmission line conductors. 

In such a case, d q transformation will not yield you a useful set of equations. But, in 

case there is symmetry, you find that d q transformation is in fact, gets you nice 

decoupled equations in d q and nice diagonal form of the inductance matrix. So, this is 

an interesting point here about d q transformation, the equation of transmission line in 

the d q frame of reference. Now, there are few more things I need to tell you about 

transmission line. So, my earlier promise of introducing you to the prime mover systems 

will have to wait a little bit. 

So, in the next class, we will just continue our discussion of trans. There is some remnant 

discussion about transmission line modeling, which we will continue and then go on to 

prime mover systems. Incidentally, in one of the examples, we did to show you the 

behavior of an a v r, the automatic voltage regulator. I did model the interconnection of a 

generator to an infinite bus by a reactor. In fact, if a transmission line is quite short, it 

turns out that, you know, you can model a transmission line for slow frequency transients 

by a lumped element. This is what in fact, this lecture told you that you could be used 

lumped pi equivalent of a transmission line to even get the dynamically response of the 

system to a very good approximation, if you are not interested in the very fast transient 

which occurs just after the transient is initiated. 

So, in fact we did, we just did show the kind of behavior of the model using detailed 

travelling wave kind of model, as well as a lumped parameter simulation. So, we did 

actually do that and show you that a lumped parameter model does give you response 

which is reasonably for slow transients. So, it gives the reasonable dynamical response. 

So, you can under certain circumstances, depending on what you really interested in 

looking at represent a transmission line by a lumped parameter model. So, that is what 

you can take back from this lecture. In addition, the d q model of a transmission line can 

also be derived and it yields a neat model of transmission line. In fact, which, this owned 

whole through, in case you got an unbalanced parameter kind of transmission line, the d 

q model will not be very useful under such circumstance. But, of course, transmission 

line which is reasonably long is also transposed. 



So, again a good approximation the system is balanced and you can apply the d q 

transformation and get d q model of the transmission line. So, these are the few things 

which I would like to take back from this lecture. We will continue a bit about the 

transmission lines in the next lecture and then, move on to prime mover systems. 

 


