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In the previous class, we saw an interesting simulation in which, when we the change the 

operating point with an AVR in action, you found that there was a increase rather the 

system did not stabilize at a new equilibrium point you found that in fact, the oscillations 

were increasing the in fact, the oscillation or the swings you can say were increasing 

with time. Now, before we proceed forward with this may I just tell you that this kind of 

thing is actually observed in practice in fact, there have been situations in which the grid 

operators are noticed that seemingly spontaneously, when the operating point or rather 

when the operating point shifts, I mean this of course, is not you know tracked by a 

operator for every small change I mean for example, a load somewhere in the system 

could change and your operating point changes. In such a case, it has been observed in 

certain circumstances that the system does not seem to settle down to the new 

equilibrium point. 

So, we in the previous class, we actually shifted over from doing the simulation to trying 

to trying to understand this using Eigen value analysis now of course, the system 

behavior essentially is non-linear as a result of which, if we want to analyze this using 

the linearized theory that is Eigen value analysis, we would need to linearise the 

differential equations and in order to do that we will have to actually first of all find an 

equilibrium point because when I say linearization I am basically, trying to characterize 

the system, in the system for small disturbances around an equilibrium point. So, your 

system, in fact the linearized system is actually dependent on the operating point.  

Now, this also means that when I change the operating point the system Eigen values 

change. So, it is probably not very surprising that your system behavior does change with 

change in operating point, but it still would be nice to really analyze this particular 

system by linearise analysis and really try to predict using Eigen analysis, that indeed 

certain operating points are unstable. 



Now, the starting point for the simulation was, we just synchronize the machine and then 

there after we gave certain disturbances like step changes in torque or the voltage 

regulator reference. So, we actually went to different operating points or we tried to go to 

different operating points by essentially, changing the inputs to the differential equations. 

So, the inputs of course, being the mechanical torque and the voltage reference. 

But for Eigen analysis, what we will assume or what we need to do is we have to first 

find out the equilibrium conditions corresponding to an operating point itself, then 

linearise the system differential equations and once you that you carry out the Eigen 

value analysis on the resulting state matrix, the linear system of the linear system. So, the 

first step in fact is trying to linearise the system or to do that of course, we need to 

compute the operating point. The first step in operating point computation is. In fact, 

doing a load flow a load flow or a steady state analysis of the system. In fact, a load flow 

computes the steady state value of variables in the electrical network. 

But what we need to also take out the initial or the equilibrium values of the states the 

states of the system. In fact, are the fluxes of the synchronous machine the currents well 

the currents are algebraically, related to the fluxes you also have a state corresponding to 

the excitation system. So, you have to effectively compute the equilibrium values of all 

these states, use those equilibrium values in your computation of the linearized system. 

Remember the linearization involves computing the you know rather computing, the 

partial derivatives of the non-linear terms and evaluating them at the equilibrium point. 

So, equilibrium point computation is the first step. In fact, is the first step of even 

simulations of course, our simulation started off with synchronization. So, luckily we 

were the computation was very simple in the sense the currents were 0 and back 

calculating all the states was very simple, but when you have got a synchronous machine 

already connected to an say an infinite bus through a transmission line of reactance x.  

We have to specify, what at least the broad operating conditions which exist of the load 

flow solution and then back calculate in a systematic manner. The actual equilibrium 

values of the states corresponding to this operating conditions, putting it in another way 

we have specified for example, what the terminal conditions of the machine are like this, 

it is giving out this much power the electrical power, it is also you know having a 

terminal voltage of say one per unit.  



So, this is like a specification which you are giving, which describes the operating 

condition from that we actually need to compute. What this value of the rotor angle say 

delta is what is the value of the other fluxes are and so on. Which corresponding 

correspond to steady state corresponding to this operating point. So, today’s lecture we 

will continue our linearized analysis. 

In fact, in the previous class we to quite a bit of time to actually obtain the steps towards 

getting the equilibrium values of the various states. Now, it is a bit it was a bit tedious I 

admit. So, what we will do is do quick recap using slide. So, that I hope whatever you 

did not or found difficult to understand there will become immediately clear here. So, 

our next step is to just I will just outline the steps required to do the Eigen value analysis, 

the first step is get the equilibrium condition. 

(Refer Slide Time: 06:40) 

 

 So, first thing I will specify. What are the things which I specify you have got a 

synchronous machine which is connected to an infinite bus. The infinite bus voltage 

magnitude and angle is specified the reactance of the lines is specified, we are assuming 

that the generator power output power P e specified as well. As we have also specified 

the voltage magnitude from these operating conditions and the parameters of the 

machine compute first the equilibrium conditions of the system remember that, the 

synchronous generator itself is has got a voltage regulator whose form we have discussed 

in the previous class.  



So, let us quickly go through the steps involved in linearized analysis, we had initially 

planned to of course, model I will give you I thought I would give you the models of all 

the various components of a power systems and then move on to analysis, but I think this 

is the better idea. Let us do our analysis side by side with the modeling. So, today we 

will do the linearized analysis of the automatic voltage regulated simple power system. 

Now, let us pay attention to the, to the slides which I am showing to you now.  
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So, the first step in computing the linearized rather the equilibrium conditions is first 

point is the infinite bus voltage is given that is it is E angle 0 which effectively means 

that E a n, E B n and E c n are these this is what I mean, when I say the infinite bus 

voltage is E angle 0. What is specified as I mentioned some time back is that the real 

power output and a voltage magnitude is specified P and V. 
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This transmission line reactance is also specified, the phase angle of the generator 

terminal voltage theta is computed by the formula sine inverse PX by VE. Note that in 

this context theta is the phase angle of the terminal voltage it is of course, a constant in 

steady state the reason why? I bring this to your notice is in another context we have 

used theta as the rotor position. 

So, we do not define a new variable here we will just continue with what we have done, 

but you should keep in mind that theta is the terminal voltage phase angle and not the 

rotor position, which was used in another context. So, to avoid notational confusion I am 

clarifying this point, we assume that the transmission line has been modeled by a toy 

model it is just a reactor effectively of X, it does not have a new resistance.  

So, the using the formula for power flow you know the power 3 phase power flow is V 

into E. The line to line voltage r m s magnitudes of both ends divided by X into sine of 

theta, theta minus 0 the angle of the infinite bus is of course 0. So, that is how we get the 

expression for theta this has to be calculated from the values of PX, V and E which are 

specified. 



(Refer Slide Time: 10:03) 

 

So, theta is obtained what does it mean? It means that if I get theta it means V a n, V b n 

and V c n are as shown. So, theta appears in this these sinusoidal terms corresponding to 

the voltage a to neutral b to neutral and c to neutral. So, we are assuming here of course, 

a star connected system, we are not considering any unbalance that is one point which 

you should recall. So, this is what I mean by V angle theta. So, theta is also obtained 

because we know the power specification. 

(Refer Slide Time: 10:37) 

 



The next step is of course, getting current suppose current is I angle phi which also 

means i a is root 2 by 3, I sine omega is 0 t plus phi. So, if I say current is I angle phi this 

is what I mean are the line currents. So, this is what I mean. So, what is the value of I in 

such a case, if i a is related to I in this fashion then I and phi capital I and phi are given 

by simply this. 

(Refer Slide Time: 11:08) 

 

The magnitude of V angle theta minus E angle 0 divided by j X. So, I capital I is equal to 

V angle theta minus E angle 0 by j X and the phase angle is of course, the phase angle of 

this quantity itself. So, the phase angle of V angle theta minus E angle 0 by X is the 

phase angle of the current. So, once you have got theta you can also get I and phi and 

therefore, you can get i a, i b and i c the instantaneous values. So, if you start off with the 

instantaneous values of the infinite bus and if you are given PX and V you can get I and 

phi and therefore, get i a, i b, i c as per this formula. 
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So, once you do that remember that the infinite bus voltage E a n, E b n and E c n. If we 

transform to parks reference frame, we have done this before for this 3 phase voltage 

source, you will get E d and E q the d q components of the infinite bus voltages as E sine 

delta minus of E sine delta and E cos delta similarly, you can show that V d and V q 

given that V a n, V b n and V c n are the form, which I had shown you about a couple of 

slides or 3 or 4 slides back similarly i d and i q are given by these formulae.  

So, this is what you get in case you do the d q transformation of the voltages. Now, what 

do you have you have got theta you have got V, you have got E, you have got i. So, you 

have got these values by just back calculating as I had mentioned some time back, but of 

course, you do not have delta we still do not have delta this is something you need to 

compute so. In fact, I cannot get E d, E q, V d, V q, i d and i q. The equilibrium values 

yet till I tell you what delta is, but remember if you just by observing E d and E q the 

form of E d and form of E q, you can show that you can compactly write this in this 

fashion right. 

 So, for example, E q plus j E d into e rise to j delta is equal to E angle 0 that is E plus j 0 

similarly V q plus j V d into e rise to j delta is V angle theta which is nothing, but V cos 

omega cos theta plus j V sine theta similarly for I and phi and i q and i d. So, what we 

know is not E d and E q, but we do know what E q plus j E d into e rise to j delta is 

know, we know what i q plus j i d into e rise to j delta is. So, the next step of course, is 



trying to find delta itself because from that we can get all the d q components of the 

voltages. 
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Now, one of the things which we derived in the previous class was that if, R a is 

neglected and if we assume that the infinite bus frequency is omega 0, which is equal to 

the base frequency then in steady state, we have E f d plus x d minus x q into i d e rise to 

j delta is equal to V q plus j V d into e rise to j delta plus j x q into i q plus j i d into e rise 

to j delta. So, this is something we did in the previous class I have just read it out, but if 

you would probably some of you would care to look at what, we did some time around 

the end of the previous lecture. 

So, what the interesting point here is of course, the E f d, E f d plus x d minus x q into i d 

into e rise to j delta is equal to finally, something what we know. So, that is V angle theta 

plus j x q into I angle phi. So, that is something we know so. In fact, we know the right 

hand side of this equation, we know what V angle theta plus j x q into I angle phi is 

because we know x q, we know I we know V and we know theta and phi. 
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So, the point here is that because of this we can compute what the value of delta is going 

to be. So, once effectively what I mean to say is if you lo at the previous slide we know 

V angle theta plus j x q into I angle phi. So, because of that we know E f d plus x d 

minus x q into i d into e rise to j phi. What do I mean may be I will make it clear here. 

(Refer Slide Time: 16:13) 

 

So, if E f d plus x d minus x q into i d into e rise to j delta is a known complex number. 

So, suppose it is A plus j B this is just you know suppose, it is this what it means is since 

this is a real number. Since, this is a real number what it means is delta is nothing, but 



the angle of A plus j B or you can say the tan inverse B by A. So, that is what I mean by 

angle of the complex number and because of that it also follows that the magnitude of 

this is the real number is nothing, but the magnitude A plus j B this we know.  

So, therefore, we can get the value of this. So, this is what we the this is where we were 

last time. In fact, once you get delta a lot of thing suddenly you know become known for 

example, once you get delta one can get since you know I angle phi you can get i d and i 

q. Similarly, you can get V d and V q and E d and E q. 
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More over since, you know now i d and you know of course, x d and x q you can 

actually get E f d. So, you can get the equilibrium value of E f d which results which 

results in the operating condition. You are trying to describe from E f d of course, you 

can obtain V ref.  
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Now, one interesting point which you should note which we mentioned last time too is 

that since we have got a proportional controller in our we have modeled a AVR with a 

proportional controller this is E f d and of course, they are limits. Now, we will of 

course, assume that the operating point is such that we are not exceeded any limit in that 

case E f d is equal to X E and in steady state this will be X E by K A.  

So, this will be X E by K A and if this is V ref and this is V we will come to know the 

value of V, the value need to give to V ref in order to get V at a terminals of the 

generator in steady state is that. So, this is an important point remember that the steady 

state gain of this transfer function is K A, K A by 1 plus T A has a has a steady state gain 

of K A. Now, of course, there is something which was implicit in what we did the we 

have got delta, but what is the initials, what is the initial angular speed of the rotor 

omega. In fact, it is equal to omega 0. Why is that? 
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So, because if we said d delta by dt equal to 0 is equal to omega minus omega 0. 

Suppose, I set this to 0 after all we are computing the equilibrium values you will get 

omega is equal to omega 0. So, that is why we get it as I mentioned. Now, what we have 

done so, far is actually compute I have given you a procedure a step by step procedure to 

compute the initial values of delta E f d, V ref and T m as well T m in per unit is equal to 

electrical power in per unit provided, the speed is equal to the base speed the equilibrium 

speed is equal to the base speed.  

So, mechanical power and electrical power are equal and mechanical torque in per unit at 

if the machine is operating at the base speed is equal to the, that both the torque and the 

power are equal in per unit. Now, we of course, I have made one assumption that the 

resistance of the generator is very small otherwise of course, there is a bit of a loss and 

the electrical power output of the generator is not equal to the mechanical power, there is 

a bit of a loss. 
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Now of course, once you get all the, you get E f d and you of course, can obtain sci d and 

sci q as well. In fact, once you have got E f d and you have got i q, i d and so on. You 

can compute what sci d is going be from sci d, you can get the values of psi f and psi H 

as well. So, this is how you actually compute the equilibrium values of all the states one 

by one of course, in the q axis psi. If you are operating at omega 0 which is equal to the 

base speed in that case psi q will be equal to minus of V d. So, as a result you will get the 

value of psi q and from there you can get the values of psi G and psi k, which are the 

other states in our state space description of the synchronous machine. 
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We will quickly go through the linearization of the differential equations of a 

synchronous machine connected to an infinite bus via a line and with an AVR. So, the let 

us just talk of the first you can say one of the differential equations is relating this, which 

really relates the rate of change of speed to the torque’s acting on the system. So, for 

example, d omega by dt d delta omega by dt is proportional is proportional to delta T m 

minus delta t E and of course, you can linearise this using this equation.  

So, this is a linearized equation, remember that the subscript ‘o’ here the subscript ‘o’ 

which appears just after this here or here really denotes, the equilibrium value of the 

states the other differential equation is linear to begin with. So, it just becomes the 

linearization is very straight forward here.  
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The rotor flux equations are. In fact, if you just look at these equations by themselves 

they are linear again, remember that stator flux is no longer the psi d and psi q are no 

longer states we shall see that they. In fact, obtain from the algebraic equations obtained 

by neglecting or setting d sci d by dt equal to 0 and d psi q by dt equal to 0 of course, A 1 

dash, A 1 double dash, B 2 dash are given by these equations. 
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And this is the algebraic equation which relates i d and i q to the stator and rotor fluxes, 

where A 3 is given by this. 

(Refer Slide Time: 24:05) 

 

The static excitation system model we assume of course that the exciter is not at its limit 

in that case x c and E f d are identical and the different linearised differential equation is 

given by this; remember that V is equal root of V d square plus V q square, which is a 

non-linear function. 
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So, when you will have to when you, when you linearise it you will get delta V is equal 

to this. As before as discussed in the previous lecture psi d, psi q, i d, i q and V d y, V q, 

I can be obtained in terms these psi d, psi q, i d, i q, V d, V q appear in the differential 

equations, but we can actually eliminate them and write them in terms of the states using 

the six algebraic equations, which are linear equations these are the six algebraic 

equations. 

(Refer Slide Time: 25:06) 

 



The linearized form of delta E d, E d and E q is given by these two equations remember 

that delta E, we assume that E is a constant. So, actually delta E is 0. So, we will just 

have delta E d is equal to minus E cos delta 0 into delta delta and minus delta E q is 

equal to minus E into sine delta 0 into delta delta. 
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So finally, we obtained this set of differential equations remember that delta psi d, delta 

psi q, delta i d, delta i q and delta V d and delta V q do not appear here, because they 

have been written down in terms of state variables, which are delta delta, delta omega 

,delta psi, f delta, psi H, delta psi G and delta psi k and substitute it in the differential 

equations, so that we get it in pure states space form that is d delta x by dt is equal to A 

into delta x plus B into delta u. 

We can now use the A matrix which we obtain finally, to do the Eigen value analysis. 

The system small signal behavior is also a function of the equilibrium point. So, once 

you get the equilibrium point plug it into all your linearized equations and you get a final 

states space form like this, once you linearised it you get your Eigen values. So, let me 

put what we are trying to do, we are trying to see how to linearise the synchronous 

machine connected to an infinite bus through a reactance, which is also having the 

generator also having automatic voltage regulator and the excitation system which is 

modeled. 



So, what we are going to do is see if we can replicate or get a good validation of the 

result simulation which result, which we got in the previous class that is for a certain 

operating condition. It was found that the system does not settle at an equilibrium point 

is it actually seen by Eigen analysis as well. 

(Refer Slide Time: 27:19) 

 

So, let us see whether that is true. So, what I need to do is of course, write a program to 

run this. 

(Refer Slide Time: 27:23) 

 



So, I have done that remember this is what we were trying to analyze. We synchronize 

the synchronous machine this is of course, the simulation result not the result of the 

Eigen analysis of course, this we synchronize the machine gave a step change in the 

electrical the mechanical torque then, we gave another step change to make it 

approximately one per unit. 

And what we saw was this is the plot of course, of delta we saw that for the second 

disturbance the system does not seem to be settling down, but seems to be increasing 

with time, its seems to be increasing with time and what we conjecture of course, is 

probably this equilibrium point is not small disturbance stable. So, we will just confirm 

this shortly. 
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So, what we will do is I have written down a program of course, this time I will not 

shown you the program. What I will do is I will just run this program, what we have got 

is gen AVR eig. So, what we will do is we will just run this program first and once you 

do that knot sci, what we will do is take out the Eigen values, the Eigen values are 

corresponding to which operating point well I have I am trying to take out the Eigen 

values in this particular, you know in this program for the operating point corresponding 

to the electrical power equal to 0.5. 
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Remember when I give a step change to the electrical power or the mechanical power to 

0.5. The electrical power also will go to 0.5 this particular equilibrium point, which 

corresponds to the first disturbance in our previous simulation is seems to be stable 

because you see that the oscillation seem to be settling down. It is only the subsequent 

disturbance which gives a step change in the torque to the tune of 0.5 which such that, 

total mechanical torque because one per unit it is then that the operating point is seem to 

be unstable. 
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So, what we will do first is try to take out the Eigen values of the linearized system 

around the operating point corresponding to T m is equal to 0.5, this is stable as per the 

simulation. So, we just take out the Eigen values and what we see here is all the real 

parts are negative this confirms that this is. In fact, a good there is a one to one kind of 

correlation between what we see in the simulation and in the Eigen value analysis. So, 

what we are really seeing is that, the system even the Eigen value analysis predicts that 

the equilibrium point corresponding to T m is equal to 0.5 is indeed stable. Now, if I 

make T m is equal to 1 per unit. 

So, remember that when I gave a step change of in the simulation from 0.5 per unit to 

one per unit in the mechanical power we first saw of course, the first step change which 

was from point 0.0 to 0.5 resulted in the new equilibrium point being stable, you saw this 

equilibrium point was stable in second step, we saw that it was not stabilizing it was 

growing with time.  

So, what we are now going to investigate is the nature of the Eigen values around the 

operating point corresponding to T m is equal to one per unit. So, now we will do that. 

So, in my program I need to just change this operating point to say one and see what are 

the small signal characteristics of the system around this equilibrium point. 
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So, I will just run the program again well. Now, what you see is that the this swing this 

low frequency oscillation here which is has got a imaginary part of 10 radiance per 



second plus or minus 10 radiance per second, it is real part is positive. So, this is actually 

an unstable system of course, one point we will notice is that the real part is 0.02 plus 

0.02. 
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So, actually the growth of these oscillations for small near about the equilibrium point 

will be e into 0.02 times t. What I mean is that your oscillations, if you give a if your 

near about the equilibrium point your oscillations will be growing at this rate, you will 

find this is exponentially growing like this. Now, the two things, which you should 

notice about the simulation, which do not seem to be consistent with this although the 

fact that this is unstable equilibrium point seems to be validated using, the Eigen value 

analysis. 

There a couple of things we have not considered that is if you look at the rate of rise of 

this oscillation, it seems to be much more than what is predicted by Eigen analysis. Eigen 

analysis predicts that e rise to 0.02 t, this is the rate of at which this growth should take 

place. Now, e is around 2.17 or. So, at every one upon 0.02 seconds you will see that 

there is a there is a amplification of 2.7, over the value which was there 2.7 seconds 

back. So, if this is 2.7 rather if this is one upon 0.02 seconds back you will see an 

amplification factor of 2.7. 

So, if t is equal to 1 upon 0.02 you will find that the amplification, which has taken place 

in this interval one upon 0.02 seconds will be 2.7 times. So, what it says is that one upon 



0.02 is nothing, but 50. So, every 50 seconds there is an amplification you know it kind 

of there is an amplification, which will occur just 2.7 times. So, there is a amplification 

which is occurring which is 2.7 times of the value which is 50 seconds back. 

But what you see here in the simulation, if you look at the simulation result the rate of 

rise is. In fact, much faster the doubling for example, has taken place in less than 10 

seconds this is probably due to the fact that, I have used Euler method in simulating this 

system. So, I think from my side this is the last time, I will try to use the Euler method it 

is giving an instability much more than what is predicted by Eigen analysis. The rate of 

growth is much, much faster Eigen analysis predicts, that this almost tripling of the 

response or the disturbance every 50 seconds, but here it is growing much, much faster it 

is doubling almost every 10 seconds. 

So, that is probably a result of Eigen analysis there is one more point which, with which 

we will conclude this lecture. You notice that the oscillation is not just growing with 

time, what I expected was linearise analysis predicts that the system is unstable. What 

does it means that the envelop of this oscillation should go on growing as I am showing 

you on this sheet it should just go on blowing up, but what happens is actually the 

oscillation is instead settling down. 
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Now, is this due to the numerical method used or is there some other issue well 

remember that, once the oscillation increases in magnitude our linearise analysis is no 



longer valid. So, what is likely what is happening probably is that the non-linear 

behavior is no longer what the linearise analysis would predict. So, rather the linearise 

analysis is not valid once the system blows up. So, that is one important point. 

So, what you see in the simulation is not exactly what you see in Eigen analysis except 

for the fact that, the Eigen analysis correctly predicts that this equilibrium point is not 

stable, but the continuous blowing up is not actually occurring. Now, why is this? So, is 

some this is are the interesting and small remanent point, which we will discuss in the 

next lecture. So, from there onwards of course, we will now go on to the modeling of 

other components in the power system. So, we will do that in the next class. 


