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Excitation System Modeling Automatic Voltage Regulator (Simulation) 
 

In today’s lecture, we will simulate the generator with an AVR. In the last class, we had 

of course, discussed various transfer functions, which could be used with an AVR. We 

now, integrate the system. In fact, this is our kind of first experience of trying to simulate 

a control system, the power apparatus, and the external power system. 
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So, that is what we will do today. Recall that in the previous class, you can look at this 

paper. We had discussed the model of a simple static excitation system, we have chosen  

a static excitation system, because it is the model of the excitation power apparatus is 

very simple. The only complexity so to speak is the limits of the static exciter, which I 

dependent on the terminal voltage. Remember that if we normalize the field voltage, and 

the control voltage to their corresponding values when we get one per unit at the terminal 

of an open circuited generator running at rated speed, then the gain of this converter can 

be is effectively 1. 

Because everything is normalized, the control signal also is normalized, and  output also 

is normalized. If we have V ref minus V, the summing junction; V and V  V ref and V 



are expressed in per unit, then a typical or rather a transfer function, which we can use 

the simplest one, one can say is a proportional type static excitation system. T A is very 

small, the gain K A when we use normalized control output and also the per unit values 

of voltage here, in that case K is typically around 200 ,300 or you know that it is in that 

range. So, coming back to what we will be doing in this lecture is to actually 

mathematically write down these equations. I will just show you simple simulation and 

we shall also try to study the behavior of a synchronous machine connected to a infinite 

bus or voltage source through reactance and with the AVR regulating the terminal 

voltage of the generator. 

So, far, we have been considering constant field voltage or the field voltage, you can say 

manually increased in steps, but now we will have an automatic continuously acting 

feedback control systems. So, today’s lecture will be focused on the simulation of a 

generator connected to an infinite voltage source with the AVR in action. 
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So, this is of course, the starting point of our discussion yesterday. The only thing we 

will be simulating today, at least in the beginning would be the regulator function. We 

will not of course, be talking about the limiter or protective circuits or the power systems 

stabilizer, although I hope to give you a motivation for its use today itself, why we need 

a stabilizer. As I mentioned sometime back, we will using simple model of excitation 

system, that is a static exciter and a generator, which is connected to a power system and 



of course, as I mentioned a couple of lectures back, we will be simply trying to regulate 

the voltage, that is the terminal voltage is measured and compared with the reference. 

We will not be putting any compensation for the load on the generator. So, we will not 

be having in the summing block any component corresponding to the current output of 

the generator. So, simply we will be having V ref minus V at the summing junction of 

the AVR. 
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So, this is our static excitation system and as I mentioned sometime back. So, this is the 

model we will be using for the system. 
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Now, when we want to simulate a synchronous generator connected to an infinity bus, 

we will again have to use the equations, which are given here. The fluxes of course, are 

something we have defined earlier. These are fluxes of the synchronous machine. i d and 

i q are the currents going out of the machine, V d and V q are of course, the voltages at 

the terminals of the machine and E f d is the per unit value of the field voltage as defined 

earlier. 
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Now, remember the currents and fluxes are related by an algebraic relationship as given 

here.  
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And A 1 is of this form. Remember show you you can notice the omega dependence of 

A 1. That is an important thing you should remember. 
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And A 2 of course, which relates the derivative of the flux of the current, is given by this. 

B 1 and B 2 are given by these, by these matrices. 
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And A 3, which relates the current to the fluxes, is a matrix. It is a 2 into 6 matrix. Now, 

of course, we are not considering 0 sequence, the implicit thing in all our discussion so 

far, have been that we are having a balance system. So, we do not actually have to model 

the 0 sequence. The thing is that the 0 sequence variables do not appear in the d q 

variable equations. So, this is complete decoupling, that coupling will occur in case 

synchronous machine is connected to an unbalanced network, but otherwise these 

equations are completely decoupled and the 0 sequence equations can be separated out. 0 

sequence equations have no source of excitation. In case, you have got a balance system. 

So, you can practically say that all the 0 sequence variables are 0 and they are not 

coupled with the d q variable. 

So, that is the reason, why we are not considering 0 sequence variables, but in case you 

do study unbalanced systems, you should remember to take into account the 0 sequence 

equations. 
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Now, coming to the system we are going to study. Now, in the last simulation, which I 

had shown you, I had got a synchronized machine which is synchronized directly to a 

voltage source and that is the kind of simple system I could have shown you this 

synchronization. In order to show AVR action of course, it does not make sense to 

connect a synchronized generator to a voltage source, because if you have connected a 

generator to a voltage source, which is a stiff or constant voltage source, there is no 

question of voltage regulation because the voltage is maintained by the voltage source 

itself. 
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So, voltage regulation makes no sense, in case you have got a generator directly 

connected directly to a voltage source in this fashion. Of course, this is a symbolic 

representation of the generator. The generator itself is not a voltage source. It is 

represented by the equation, which I have already shown you. Now, the aim at the AVR 

is trying to maintain the voltage of this, constant constant. So, constant or near constant. 

In fact, if you are using a proportional gain, it is near constant not perfectly constant. 

Now, as I said this does not make any sense, if you have got a perfect voltage source 

here to which this generator is connected. What makes sense of course to you know 

show the action of a AVR, is to connect it to a infinite bus or a large grid. 

It is connected to a large grid. It is also called a infinite bus or constant voltage source, 

whose magnitude, frequency, phase angle all are all remain constant. What we are going 

to do is connect it via, what would you connect to via, a transmission line or a 

transformer or a transformer and a transmission line. So, this is the transmission line. 

Now, we have not gone into the modeling of a transmission line. 
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So, we will not really dwell deeply into this modeling of the transmission line itself, but 

you will know that, well a kind of a simple model of generator connected via a 

transmission line and transformer. A very simple model could be a lumped reactor. It is a 

simplest model lets, you know which one can have. You know in a. In a laboratory, we 

could actually make this set up, we could actually connect via reactor. 



But, right now we will assume that you have got a three phase inductance L, which 

connects the generator to the perfect voltage source that is the infinite bus. Now, the 

generator now can you know maintain the terminal voltage, try to maintain the terminal 

voltage because it tends to vary. How does it vary the, how does the terminal voltage 

vary. For example, the power output of this generator changes, in that case the current 

through this will change and you will find that the voltage here changes. The only way 

you can maintain this voltage here at a near constant value, is to have a closed cook loop 

feedback system, which changes E f d, the field voltage. 
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Now, in of course in steady state, the steady state representation of a non salient pole 

generator is simply like this. Please refer to a fairly early analysis of a steady state steady 

state analysis of a synchronous generator, which was done roughly 6 or 7 lectures back, 

quite time quite at some time back. So, steady state representation of a non salient pole 

synchronous generator is this. 

So, this is the steady stated. Not, of course, please do not use this under transient 

conditions. Under transient conditions, you will actually have to use the differential 

equation model of the synchronous machine. So, do not use this for a transient 

representation of a machine, but we can see that if you have got a system like this infinite 

bus, at least in steady state it is easy to see that if I change E f d, I will be able to control 

or change the voltage here. So, this is the basic principle of course, of the AVR itself, 



that you change E f d. Now, coming to the model of this transmission line, now this is a 

simple reactor, whose inductance is L, then the equations are given as shown in this 

slide. 
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That is, L d i by dt is equal to v a minus E a. E a is of course, E a and v a are in fact, 

phase to the neutral voltages of the balanced infinite the generator as well as the infinite 

bus. So, remember that E a, E v, E c actually represent the phase to neutral voltages of 

the infinite bus and synchronous generator. For simplicity, we will of course, assume that 

your infinite bus is simply E a is nothing, but. 
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So, for simplicity we will assume that E a, the phase to neutral voltage of the infinite bus 

is nothing but root 2 by 3 V line to line RMS, the line to line RMS of rather I should call 

it E. That would be notationaly more easy to remember. This is E sin omega 0 t. So, we 

will assume that you are seeing the infinite bus is of course this. The 120 degree is this 

plus 120 degrees. Now, so omega 0 is the constant frequency of the infinite bus. 
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So, this is what E a means. Now, if you look at what will happen in case, you try to 

transform this into d q 0 variables. Now, transforming the d q 0 variables is quite simple 



in this case. You know the d q transformation; we have talked about d q transformation 

or the Park’s transformation. So, if you use the Park’s transformation, you transform i a, i 

b, i c into i d, i q and i 0 and by doing that, the equations are quite straight forward, but 

remember that you get these speed terms. You know or rather I should say omega 

dependence. Omega, remember is d theta by dt, where theta is the position instantaneous 

position of the rotor of the machine. So, if you do the d q analysis of this system, we can 

express this equation in this fashion. It is also in per unit. 

So, what you see is, x here is omega B L by Z base. So, so the best thing would be of 

course, to use a common base, which is the base of the synchronous machine itself. So, 

the impendence base of the synchronous machine is used to define the bases, sometime 

go in our course. Now, one small and interesting point, which we have here is the current 

through the this reactor, which is interconnecting the synchronous machine to the infinite 

bus is the same as the current through the synchronous machine. 
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So, actually if you look at the synchronous machine, this is your synchronous machine, 

this is this is this is only the symbolic representation, this is not an electrical circuit. 

Remember, synchronous generator cannot be represented simply as a voltage source. 

This is a reactor and this is here. So, your current output of the machine i d and i q is the 

same as the current through this i d and i q. i 0 is also there, which the neglection of 

which the neglect of which I have already explained sometime back. Of course, if you 



have got some load here, for example, if you got have you know resistive load here or 

any kind of load here, this will not be true. 

 So, if I have got something here, then i d and i q are not the same for the generator and 

the inductor. Now, one of the interesting points, which you have here is, this is 

interesting theoretically also, is and also practical consequences, when you are trying to 

program the simulation of this system is that since, i d and i q are effectively determined 

are a function of the fluxes, they algebraically related to the fluxes we have seen that, but 

you also see that i d and i q are also determined by this differential equation, so; 

obviously, there is a kind of a interesting situation here, you have got two sets of one 

algebraic equations and one differential equation, which are both are trying to define the 

current.  

So, this is actually you have to be consistent, you cannot have this differential equation; 

for example, telling you that the current is something else and algebraic equation is 

telling you something else. Remember the algebraic equations relate the current to the 

flux, which are fluxes, which are again independently determined by the differential 

equations. 

So, this. So, the issue here is, that in some sense we have got these two differential 

equations here. They are quite redundant. In the sense, that i d i q is already determined 

by that, by an algebraic relationship with the fluxes. You really do not need to define to 

you know this extra set of differential equations and if you do use these differential 

equations as well, we have to be really care to be consistent. In the sense, you cannot 

give i d and i q here; for example, the initial conditions of this differential equations, 

which are inconsistent with what you would obtain, when you get the currents 

algebraically related to the fluxes. 

So, all the initial conditions would need to be absolutely consistent. Now, the situation 

like this could arise, this is of course, a slight diversion from our main theme of power 

system dynamics, but it could be nice to just chew on this. 
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Suppose, I have got two capacitors, which are in parallel. So, you can have, this is 

suppose, the current here is i, you have got d V by c C 1, C 2 is equal to i 1, i 2. So, we 

will call this V 1 and V 2, the voltages V 1, V 2. So, you will have C 1 d 1 V 2 d 1 by dt 

is equal to i 1 and C 2 d V 2 by dt is equal to i 2 and i 1 plus i 2 is equal to i and V 1 

should be equal to V 2. 

So, actually, this in some sense, you can say that you know by choosing V 1 equal to V 

2, why do we require a differential equation again. Why do we need another law to 

define V 2. So, this in some sense V 2 is again a redundant state in such a situation. So, 

when you are actually trying to simulate such a system, it is better to remove the 

redundant states. You know of course, that V 2 is dependent on V 1, it is equal to V 1 V 

1 and V 2 are equal. So, we only need to determine the current through this. Whatever 

voltage you have here will be the same as the voltage here. Then we have another 

situation when an inductor is connected to another inductor. 
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So, there there to you know the question is how many states are there. You know you 

you can if you write two differential equations, this could be when taking one inductance 

splitting into two and getting into this problem. So, this is something, which this is 

similar situation, which you encounter here. Of course, this problem is solved. In case 

you got something connected in shunt, which is not an inductor. For example, a resistor 

or a capacitor you connect it, then these two states become distinct. You can have two 

different two sets of differential equations, which really for these inductors, which define 

give, separate important information. So, this is one interesting point, which you know 

you should chew upon. 
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If you look at something about the infinite bus itself, we are a kind of progressing to 

finally getting our equations. We have not actually solved this earlier problem of 

redundant states. I have just told you that, these states are actually redundant because i d 

and i q are obtained by algebraic relationships with the states. So, how do you use this 

information usefully? So, that is something, which you need to chew upon. The infinite 

bus itself remembers its frequency is omega 0 and the phase angle since E a, E b and E c 

are defined to be these. 
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Now, if the rotor angle position theta, there is a position of the rotor theta is defined like 

this. If omega 0 is the frequency of infinite bus, rotor position is omega naught T plus 

delta, which also means that if you have got a two pole machine, we will just talk about 

two pole machine here. The a-phase winding, the axis of the a-phase winding and the 

axis of the rotor winding, the field winding that is, is delta. Whenever there is negative to 

positive 0 crossing of the sine wave if I take a snap shot of a synchronous machine, I will 

see that the rotor is at an angle delta. So, that is what delta means. If that is the case E d 

will be E sin minus E sin delta. This is something we defined before. This is just to 

obtain by applying d q transformation E a, E b and E c and d delta by dt from by 

differentiate differentiating theta. 
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Theta, d theta by dt is nothing, but the speed of the machine, the instantaneous speed of 

the machine, which which is nothing but omega 0 plus d delta by dt and that is how I get 

d delta by dt is equal to omega minus omega 0. Let us assume that E is equal to 1 and a 

frequency of the infinite bus is equal to the base frequency. So, this is a simplifier or 

analysis. 
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So, what we have now is the synchronous machine and plus the equations of the external 

network. Now, what remains to be done of course, is the exciter equations themselves. 

The excitation system essentially takes a feedback of the voltage, the terminal voltage V 

d and V q and the set point is what is given by us and this is how your system looks like. 

Now, one of the things is that for the excitation system, we really require to know the 

magnitude of the voltage and that is something we will spend little bit of time on now. 

What is the terminal voltage magnitude? In fact, I have been using this somewhat 

nebulas kind of concept of a voltage magnitude. 
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This is the voltage magnitude of the terminal. You know what is V? V is the magnitude 

of the voltage at the terminal of a synchronous machine, but you will immediately 

recognize, is the fact that voltage magnitude in transient. What do we mean you know if 

you have got a pure sinusoid, then getting the magnitude is very simple. You know you 

can for example, take the peak value and you can divide you know kind of from the peak 

value, you can find out line to line RMS value of voltage. So, you have got balanced 

three phase sinusoid, you can get the peak value of any phase and then, get the line to 

line RMS magnitude. 

Now, mere magnitude of course, is in some sense coefficient of the sinusoidal term, 

when we write down the time relationship. So, when I say magnitude, I usually mean 

something like this. If I want magnitude of a sinusoid, I mean that I usually mean that the 

coefficient here is the magnitude, but this assumes that you have got a sinusoid. Now, if I 

give a waveform, which is like this and I tell you well find out the magnitude of the 

sinusoid here in this case. That is a bit of a bit of a question mark because this is no 

longer sinusoid. So, what do I represent this as and how do I get this magnitude as 

coefficient of a sine function. You know when this is a transient kind of behavior, where 

you cannot represent it as a pure sinusoid. 
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So, this is an interesting point, in practice whenever I am getting a magnitude of V, what 

could I do? One of the things I could is, you take the three phase voltages V a, V b, V c. 



So, for example, you have got V a is the voltage across the winding of a synchronous 

machine, I could connect them in star and I could take the phase to neutral voltage. This 

is the voltage across the y a winding, give it here, sense it. 

 So, I will get 3 sine 12 ,in steady state I will get three sinusoids, but otherwise of course, 

I will get simply the instantaneous values V a n, V b n and V c n. Now, one of the ways 

you could you know define magnitude of a voltage is to take the Fourier component of V 

a, V a n, V b n and V c n. For example, of course, your data is just coming in, you know 

it is not a fix signal, but you know you are kind of continuously getting. If this is a digital 

signal system; for example, you will be continuously getting samples of V a n, V b n and 

V c n. 

So, how do you actually take out the magnitude or you can say Fourier coefficient of this 

fundamental Fourier coefficient of this well. So, I could define V a bar as something like 

this, t minus T to t. So, this is the one way to defining it. So, you try to get magnitude of 

V a in this fashion. As you get this instantaneous values, we evaluate this integral using 

some kind of function, you will have to actually implement this using; for example, 

digitally you can implement a numerical integrator using the discrete samples of V a n. 

This is what you could do and get a kind of Fourier coefficient. Of course, during 

transients you will get something, which seems reasonable to assume what you will get is 

the Fourier, what you call the magnitude of V a. 

So, this is one way of doing it. In fact, you will have to get a sine component as well as 

the cosine component and then, whatever you get let us call this sine component and this 

is the cosine component, this is of course, a real number and then, you can use this root 

of V a s square plus V a c square, to get what we can call or define the magnitude. So, if 

you you should remember that, when it comes to transients, you have to kind of define 

what is voltage magnitude. There is there is no definition. By definition you cannot have 

a magnitude of rather naturally or inherently there is no meaning to having a magnitude 

of a non sinusoidal wave. 
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So, another easy way of doing things is, you take this V a, V b and V c and you compute 

root of V a square plus V b square plus V c square. Now, this also I can call as the 

magnitude of voltage. Remember that if V a, V b and V c are balanced sinusoids, I leave 

it to you to prove that V will be a constant and equal to the line to line RMS magnitude. 

So, if V a n, V b n and V c n we take, evaluate this instant, an instant by instant. So, this 

is an instantaneous value. If V a, V b and V c are pure sinusoids, balanced sinusoids, 

balanced set of sinusoids, you can show that V is a constant and equal to the line to line 

RMS voltage under these circumstances. 

So, what one extension I can do is, that even during transients even during transients 

treat this V as if it is a voltage magnitude. So, this is one way of doing things and this is a 

simple way of doing things. So, you can either use this kind of method of finding the 

Fourier components, even during transients by using this kind of numerical integration or 

you can take the instantaneous values of V a n, V b n, V c n square them and square and 

add them up, get this value of V and treat it as if it is voltage magnitude, even during non 

sinusoidal and transient conditions. Of course, V is not constant in case the system is not 

balanced or during transient conditions, but eventually V settles down to a constant 

value, if transient dies down and we reach a balanced sinusoidal steady state. So, this is 

one important point.  
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So, if V is equal to root of V a square plus V b square plus V c square, you can show that 

this is equal to. So, you can actually actually, it is plus V 0 square, but we of course, 

assuming that using absolutely balanced system. So, V 0 is 0. So, V can be defined as 

root of V d square plus V q square. In fact, what it means really is that we can use our 

equations in the d q form and model the summing junction of an AVR, the inputs of the 

summing junction of the AVR by simple d q variables themselves. 
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Now, can you prove this? I will leave it to you to prove. One of the things I can just hint 

to you is, V is equal to V a V b V c into V a V b and V c and of course, the square root of 

it. So, raise to half and remember that V a V b V c into, this can be treated as identity 

into V a V b V c. This identity matrix can be written as C p transpose into C p, the Park’s 

transformation and that is how you will get this relationship. You can just work it out. 

There are some other interesting points in this stage, which I must tell you is that what is 

real power. Real power in terms of at a bus, injected at a bus. What is the real power in 

terms of the d q variables? 
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Now, instantaneous power is defined as in three phase balanced set up is this, this 

instantaneous power. Now, you can show that this is nothing, but if you use the 

transformation, which have you used sometime back. So, that is the Park’s 

transformation with the appropriate values of K d and K q. This is in fact equal to this. 

Remember of course, that in sinusoidal steady state, this product is a constant; balanced 

sinusoidal steady state is productive is constant. Reactive power, what is the definition of 

the instantaneous reactive power? Well now, we have to be a bit careful. Reactive power 

probably makes no sense at this, I cannot make much sense of out of reactive power 

defined on an instantaneous basis, but if you for example, you can show that Q t this, the 

reactive power instantly can be defined. 



So, it can be defined as under balanced situations of course, you can show that this in 

fact, boils down to the normal definition of reactive power. So, this is something, please 

think over; if you have got a 3 phase sinusoidal circuit with you can just take a simple 

star connected circuit and prove these things. That at least in sinusoidal steady state this 

is true. This matches with sinusoidal balanced steady state. This particular expression 

matches with our classical expression of q, but q instantaneous reactive power can be 

defined in such a fashion. Remember that it does not really make sense to define the 

reactive power is a kind a of steady state concept. It is a sinusoidal steady state concept. 

So, again it is a bit, you should remember that whenever you say instantaneous reactive 

power is this, this is only a mathematical artifice and it really does not have any physical 

meaning, but in steady state of course, this boils down to what is our classical definition 

of reactive power, which indeed has physical, make some physical sense. So, please this 

is something you should just think over, it is an interesting problem in itself. 
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Now, if I am measuring V as root of V d square plus V q square, I am getting 

instantaneous values of magnitude or this is the definition of the instantaneous value of 

magnitude, which is consistent with what we get in steady state. 

So, this will be equal to the line to line RMS voltage magnitude in steady state. So, this is 

a nice definition. Of course, if you are under unbalanced conditions, it is not difficult to 

show that V d square plus V q square, square root of that is not a constant. So, whenever 



we are making; for example, could have V ref and we could be calculating the 

magnitude, say by taking V a, V b, V c from V a, V b, V c we may be getting by square 

root of V d square plus V q square as the magnitude. Normally, we will not use this 

without any kind of filtering. We normally pass it through a low pass filter. 

So, this is something, which you should remember, but this low pass filter would be 

basically design only to reject high frequency transients. It is not that slow transients. 

High frequency noise are unbalanced, which will cause V d square and V q square to 

keep varying will be removed by this low pass filter. So, this is how a summing junction 

would look like. Now, another interesting point is that if I do not use this d q definition 

of voltage magnitude, but instead use this square root of V a s square plus V a c square 
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This is for the A phase. Square root of; as the magnitude and this is how I define and 

compute this from the instantaneous values. In that case, remember that since we are 

doing integration here, this is a moving kind of integration from t minus T. So, this is 

over a window of T, then in this case there is an kind of inherent filtering effect, which is 

their because of this integration. So, just think over it is an interesting problem of 

computing instantaneous magnitude and so on. 
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So, in this particular course, we shall assume that this is when I say magnitude, it is this. 

Root of V d square plus V q square the square root of it. So, that is what is what we 

have? So, if I want to write down the model of AVR and exciter, this is what we need to 

do.  
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So, if you take a simple static exciter model, which is suitable for slow transients. Slow 

transients I mean typically associated with electro mechanical phenomena like swings or 



low frequency transients of around one between one or two hertz and which involves 

oscillations of one or two hertz, that is what I will define as a slow transients. 
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In that case, this is a simple model. That is the AVR is K 1 plus S T A. Then you have 

got this limit and you are got E f d. So, the differential equations, which you get or let us 

call this state associated with this transfer function is X E, we have already seen in the 

previous class that 1 upon 1 plus S T A can be written down in terms of state equations. 

So, in such a case, what we have effectively is d X E by dt is equal to minus 1 upon T A 

into X E plus k A into the input, which is nothing but the error; v ref minus V and as I 

defined sometime back the voltage magnitude is the root of V d square plus V q square, 

the terminal voltage of the generator. 

Now, X E itself is not E f d. Well not always. X E is equal to E f d, only if the value of X 

E lies within the limits. For example, we could have plus as I mentioned in the previous 

class we could be plus 7.0 V and minus 7.0 V. This is essentially a modeling the limits of 

the converter. In the sense that, it is the output of the converter will be limited by the AC 

input to it. So, X E will be equal to E f d, only if X E is between minus 7 times V and 

plus 7 times V. This is not volts; this is the magnitude of the terminal voltage. So, this is 

what we get. If we had used a brushless excitation system, remember that you would get 

much more complicated equations for the excitation system. 



So, if I used a brushless exciter in fact, the output would depend there would be 

dynamical equations associated with excitation power apparatus as well. So, as I 

mentioned in the previous class, you need to look at the IEEE standard or several books, 

which really describe a brushless excitation system modeling in detail, but if you are 

talking about a static excitation system is practically only the limit, which has to be 

modeled. The AVR of course, is a simple transfer function; it is a simple proportional 

controller. In practice, you may have something more complicated, you may have lead 

lag block also in series with it, but we will not really go into modeling that much in 

detail. We will do simple a simulation to a show you the effect of the static excitation 

system. 
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If studying slow electro mechanical transients while operating near the normal speed, we 

can as an approximation set d psi d by dt is equal to 0 and d psi q by dt equal to 0 and 

omega approximately equals omega base. 

So, this is of course, if you are operating in the normal speed and we are interested in the 

slow transients. As we have just discussed in our previous treatment of this system. Now, 

one more. So, we have two algebraic equations here, instead of differential equations. 
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On the other hand, our model of the interconnection, I have mentioned this sometime 

back in the context of the presence of redundant states. The model of the interconnection 

is given by this differential equation. Now, as a logical extension to the approximation, 

which you have just made, that is d psi d by dt is equal to 0 and d psi q by dt is equal to 0 

and omega approximately equal to omega B. 
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It makes sense to set d i d by dt is equal to 0 and d i q by dt is equal to 0 as well in these 

equations. So, if you do that of course, the differential equations get converted to 



algebraic equations. The differential equations, which I just showed you in the previous 

slide get converted to algebraic equations, which is shown here. So, of course, what is 

the logic in doing this? Remember that in case we are neglecting fast transients by setting 

d psi d by dt equal to 0 and d psi q by dt equal to 0, there is really no point in retaining 

rather describing i d and i q by a differential equation, because if I do retain this 

differential equation, then we are not really getting the need of fast transients. You can 

show this is something I am not proving here, but you can show that If I retain this is a 

differential equation while setting d psi d by dt is equal to 0 and d psi q by dt is equal to 

0, I am not really getting rid of the fast transients because of this differential equation, 

you will still have fast transients and the system will be still stiff. 

So, in case if you are studying slow electromechanical phenomena, it makes sense; not 

only to set d psi d by dt equal to 0 and d psi q by dt equal to 0, but also d i d by dt is 

equal to 0 and d i q by dt is equal to 0. As a result, you get these algebraic equations. So, 

now, we have in fact, if you if you have noticed got rid of four differential equations and 

have algebraic equations in their place. Now, let us look at the other differential 

equations of the system incidentally before we go ahead. Remember that the redundancy 

of states, which I was just discussing sometime back in this lecture, that problem in some 

sense gets also solved. 

Because once we set d i d by dt equal to 0 and d i q by dt equal to 0; d psi d by dt and d 

psi q by dt equal to 0, they are no longer states and then we do not have to give initial 

conditions to them and if we do not give initial conditions to them, we do not have to 

worry about giving consistent initial conditions to these variables. Now, in fact, to some 

extent you will notice that rather I should say that since you have got i d, i q, psi d, psi q 

as algebraic variables, which are really dependent on other other variables in the system, 

we do not have to bother about the redundancy in states problem anymore. 
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Looking at the differential equations let just scan through all the equation again. This is a 

torque equation in per-unit. 
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These are the rotor flux equations. Remember that psi d, psi q no longer being states, we 

do not have to write differential equations for psi d and psi q. 

So, the only differential equations as far as the flux equations are concerned and the rotor 

flux equations. So, let us just. So, we have got one differential equations of the rotor 

speed, four differential equations corresponding to the rotor flux equations. Later on 



missile also, see that there is one differential equation corresponding to the rotor angle 

delta. A 1 dash A 1 double dash and B 2 dash are given by these equations. 
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There is also an algebraic relationship, which relates i d and i q to psi D, psi Q, psi F, psi 

H, psi G and psi K. So, there are two algebraic equations the two algebraic equations, 

which really relate i d and i q to the rotor and stator fluxes. So, these are algebraic 

equations, not differential equations. 
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So, over all incidentally A 3 is given by this. So, in this equation A 3 is given by this. 



(Refer Slide Time: 46:30) 

 

We also see that E d and E q, which appear in these equations. In fact, E d and E q 

appears in the algebraic relationship of i d and i q, which we discussed sometime ago. 

So, E d is nothing but E sine delta minus E sin delta and E q is equal to E Cos delta. This 

is by applying Park’s transformation to E a n, E B n and E c n, which has phase to 

neutral voltages of the infinite bus. This is one differential equation here. Remember that 

in this in this system we assume this data E is equal to 1 and the frequency of the omega 

of the infinite bus is equal to the nominal frequency or the base frequency. This is of 

course, date which is given to us or rather I am giving it to you. This could be this is for 

example, E could be 1.1 also or the frequency of infinite bus could be slightly higher or 

lower than the nominal speed. 

But, let us first for simplicity, let us assume E is equal to 1 and omega 0 is equal to 

omega B. So, we are assuming that the infinite bus frequency is the nominal bus nominal 

nominal frequency of the synchronous machine. 
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The static exciter is modeled for the first order differential equation. Now, X E is not the 

same as E f d. In fact, X E is same as E f d only if X E is within the limits of the 

excitation system. Of course, if it exceeds the limits, then X E is clipped to the maximum 

or the minimum value of E f d as defined by the exciter model. So, actually this is a 

simple static exciter plus voltage regulator model. 

So, in fact, I should write here static exciter plus automatic voltage regulator model. So, 

it is just defined by one differential equation. V is equal to square root of V d square plus 

V q square as discussed sometime previously in this lecture. 
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So, the number of states are 6. In fact, there are 6 differential equations corresponding to 

these 6 states. The other variable psi d, psi q, i d and i q, V d and V q are really not 

states. We have set d psi d by dt and d psi q by dt, d i d by dt and d i q by dt equal to 0, 

because of which we have got rid of differential equations and redundancy of states. 

There are 6 algebraic equations of course and inputs to the system are T m and E f d. E is 

of course, the infinite bus voltage, which also has to be given to you and speed of the 

infinite or the frequency of the infinite bus also to be given to you. 
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Remember, that the 6 others other variables psi d, psi q, i d, i q, V d, V q, which are no 

longer states can be obtained in terms of the states. The states are delta omega psi F, psi 

G, psi H, psi K. By using these 6 linear algebraic equations, linear simplifies our job. So, 

because the solution can be got in one shot without any numerical iterative procedure. 

So, we can directly write psi q, psi d and i d, i q and V d, V q in terms of delta omega; 

omega in fact, does not appear here, because we have taken omega approximately equal 

to omega B, but delta appears in this E d and E q term and of course, psi F, psi H, psi G 

and psi K appear here. 

So, this is how we obtain all the equations, the mixture of 6 differential equations and 6 

algebraic equations. The algebraic equations allow us to get rid or other better word 

would be to get to write V d, V q, i d, i q in terms of the states. So, in fact, V d, V q is 

required by the differential equations and psi d, psi q, i d, i q are required to differential 

equations. These are in fact, in terms of the states itself themselves psi F, psi H, psi G, 

psi K, delta and omega. So, it is a fairly trivial matter to write this psi d, psi q, i d, i q, V 

d, V q is terms of the states and in some since, eliminate them from the differential 

equations. 

So, before we close today, let me just give you a flavor of simulation. We will will not be 

able to explain all the aspects of the simulations today. What I do is, I will synchronous 

the generator right at time T is equal to 0. It will be a bump less synchronization. 

Thereafter, I will increase the torque of the synchronous machine. I will load this 

synchronous machine and I will show you that the terminal voltage remains more or less 

constant in case you have got an AVR and after a 15 seconds of course, the step in real 

power will be given at 5 seconds, after 15 seconds we will give a step change in the 

reference value of the AVR. 

So, that is what we simulate and close this lecture thereafter. So, if I simulate this, I am 

simulating about 25 seconds with Euler method with a time step of 5 milliseconds. So, 

that is why it is taking fairly large amount of time. Remember one more problem which 

is encountered with Euler method is that one problem, which is encountered with Euler 

method; it is not a very numerically stable way of simulation. I have just used it for 

simplicity of simulation. So, it is a often said that Euler method is only taught. It is never 

used really in practice. 



So, anyway by making the time step very small and removing the stiffness and none the 

less I am able to use Euler method in this particular situation. 
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I encourage you to try to use some other method. Now, let us plot how a E f d looks. 

Now, remember at 5 seconds I have increased the torque and at fifteen seconds I have 

increased the reference value of AVR, v ref. 
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In both situations, you will notice that whenever there is change in the loading of the 

machine at 5 seconds, the E f d changes from 1, which is the value under the no load 



conditions. It changes automatically to around 1.5 and if I change the v ref, that is the 

reference voltage of the synchronous machine, again E f d changes. Now, E f d is able to 

take on the value as high as 7 because the limits are very high, excitation system of this 

kind have high ceilings. 

So, we are able to force the field to a very high value. That is of course, as I mentioned 

sometimes back, because the field winding is a very slow acting system and you really 

need to push it a lot in order to make it a work faster. So, this is the way how field 

voltage changes. The field voltage is no longer constant because it is being changed by 

the automatic voltage regulator. 
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And if you look at V itself, it is v gen. I have changed the f c, the reference value is 

initial was 1 per unit, near about one per unit. As I loaded the machine, the reference 

value went down slightly or rather the terminal voltage magnitude went down slightly, 

initially it was 1 per unit, if I load the machine its goes down. 

Now, the question is, why does the voltage magnitude of the synchronous machine go 

down if it is regulated. Here, remember at 5 seconds I have applied the load. Now, while 

if I have applied load, why should the terminal voltage magnitude change if it is being 

regulated by the AVR. That is one question, which we need to ask ourselves. We will try 

to answer that question next time. Of course, if I give a step change in the automatic 



voltage regulator at 10 seconds of course, it was 10 not 15 seconds, at 10 seconds the 

terminal voltage of the machine goes up. 

So, it regulates it. It changes the value according to the set point. So, it is gone to around 

1.045, you know roughly. So, this is how the AVR behaves, there are many many 

interesting points, which I need to discuss with you. There is not time for that in this 

lecture. So, we revisit this point in the next class, redo this simulation and try to bring out 

some of the nice interesting points, which come out of the simulation. So, for that we 

will meet again in the next class. 


